Please confirm topic selection

Are you sure you want to trigger topic in your Anconeus AI algorithm?

Images
https://upload.orthobullets.com/topic/3050/images/17_moved.jpg
https://upload.orthobullets.com/topic/3050/images/hill sachs.jpg
https://upload.orthobullets.com/topic/3050/images/shoulder mri- anterior dislocation.jpg
https://upload.orthobullets.com/topic/3050/images/shoulder-arthoscopic labral repair.jpg
  • summary
    • Traumatic Anterior Shoulder Instability, also referred to as TUBS (Traumatic Unilateral dislocations with a Bankart lesion requiring Surgery), are traumatic shoulder injuries that generally occur as a result of an anterior force to the shoulder while its abducted and externally rotated and may lead to recurrent anterior shoulder instability.
    • Diagnosis is made clinically with the presence of positive anterior instability provocative tests and confirmed with MRI studies that may reveal labral and/or bony injuries of the glenoid and proximal humerus (Hill-Sachs lesion).
    • Treatment may be nonoperative or operative depending on the chronicity of symptoms, the presence of risk factors for recurrence, and the severity of labral and/or glenoid defects. In high-risk populations, surgery is often offered after a single dislocation event.
  • Epidemiology
    • Incidence
      • one of most common shoulder injuries
        • 1.7% annual rate in general population
    • Demographics
      • have a high recurrence rate that correlates with age at dislocation
        • up to 80-90% in teenagers (90% chance for recurrence in age <20)
    • Risk factors
      • markedly higher incidence in
        • military patients
        • contact athlete patients
  • Etiology
    • Pathophysiology
      • mechanism of injury
        • anteriorly directed force on the arm when the shoulder is abducted and externally rotated
      • pathoanatomy
        • "on-track" versus "off-track" concept of Hill-Sachs lesion (instability as a bipolar concept)
          • Hill-Sachs defect is "off-track" and will "engage" on the glenoid if the size of the Hill-Sachs defect > glenoid articular track (HSI > GT)
          • conversely, the Hill-Sachs defect is "on track" and will NOT "engage" if the size of the Hill-Sachs defect < glenoid articular track (HSI < GT)
          • Glenoid Track (GT) = 0.83D-d (D = diameter of inferior glenoid, d = width of anterior glenoid bone loss)
          • Hill-Sachs Interval (HSI) = HS+BB (HS = width of the Hill-Sachs, BB = width of bony bridge)
          • may have implications regarding surgical management
            • goal is to convert on off-track lesion into an on-track lesion
    • Associated injuries
      • orthopaedic
        • labrum & cartilage Injuries
            • is an avulsion of the anterior labrum and anterior band of the IGHL from the anterior inferior glenoid.
            • is present in 80-90% of patients with TUBS
          • humeral avulsion of the glenohumeral ligament (HAGL)
            • occurs in patients slightly older than those with Bankart lesions
              • also found in female collegiate athletes
            • associated with a higher recurrence rate if not recognized and repaired
            • an indication for possible open surgical repair
          • glenoid labral articular defect (GLAD)
            • is a sheared off portion of articular cartilage along with the labrum
            • presence is a risk factor for failure following arthroscopic stabilization procedures
          • anterior labral periosteal sleeve avulsion (ALPSA)
            • can cause torn labrum to heal medially along the medial glenoid neck
            • associated with higher failure rates following arthroscopic repair
            • common finding in patients with recurrent instability managed nonoperatively
              • 97% of patients with recurrent instability have either a Bankart or ALPSA lesion
        • fractures & bone Defects
          • bony bankart lesion
            • is a fracture of the anterior inferior glenoid
            • present in up to 49% of patients with recurrent dislocations
            • higher risk of failure of arthroscopic treatment if not addressed
            • defect >20-25% is considered "critical bone loss" and is biomechanically highly unstable
              • stability cannot be restored with soft tissue stabilization alone (unacceptable >2/3 failure rate)
              • requires bony procedure to restore bone loss (Latarjet-Bristow, other sources of autograft or allograft)
              • recent studies suggest critical bone loss may be as low as 13.5%
              • each dislocation event causes, on average, 6.8% bone loss
              • glenoid takes on an inverted-pear appearance as bone loss increases
                • 89% failure rate following arthroscopic repair in patients with this glenoid morphology
          • Hill-Sachs defect
            • is a chondral impaction injury in the posterosuperior humeral head secondary to contact with the glenoid rim.
            • is present in 80%-100% of traumatic dislocations and 25% of traumatic subluxations
            • is not clinically significant unless it engages the glenoid
          • greater tuberosity fracture
            • is associated with anterior dislocation in patients > 50 years of age
            • increases risk of recurrence
          • lesser tuberosity fracture
            • is associated with posterior dislocations
        • nerve injuries
          • axillary nerve injury
            • is most often a transient neurapraxia of the axillary nerve
            • present in up to 5% of patients
        • rotator cuff tears
          • 30% of TUBS patients > 40 years of age
      • medical
        • global hyperlaxity (i.e. Ehlers-Danlos Syndrome, collagen disorders)
          • often associated with atraumatic instability
          • global hyperlaxity confers an odds ratio (OR) of 2.68 for the development of anterior shoulder instability
          • individuals with global hyperlaxity have a 3x higher rate of recurrent instability
        • patients with global hyperlaxity are less likely to develop capsulolabral lesions
  • Anatomy
    • Glenohumeral anatomy
    • Static restraints
      • bony anatomy
      • capsule 
      • glenohumeral ligaments
      • labrum
        • labrum contributes 50% of additional glenoid depth
    • Dynamic restraints
      • rotator cuff muscles
      • long head of biceps tendon 
    • Anterior static shoulder stability is provided by
      • Anterior band of IGHL (main restraint)
        • provides static restraint with arm in 90° of abduction and external rotation
      • MGHL
        • provides static restraint with arm in 45° of abduction and external rotation
      • SGHL
        • provides static restraint with arm at the side
  • Classification
      • Anteroposterior Translation Grading Scheme
      • Grade 0
      • Normal glenohumeral translation
      • Grade 1+
      • Humeral head translation up to glenoid rim 
      • Grade 2+
      • Humeral head translation over glenoid rim with spontaneous reduction once force withdrawn 
      • Grade 3+
      • Humeral head translation over glenoid rim without spontaneous reduction
      • Sulcus Test Grading Scheme
      • Grade 1
      • Acromiohumeral interval < 1cm
      • Grade 2
      • Acromiohumeral interval 1-2 cm
      • Grade 3
      • Acromiohumeral interval > 2cm
      • Instability Severity Score
      • Variable
      • Parameter
      • Score
      • Age
      • < 20 years
      • > 20 years
      • 2
      • 0
      • Degree of sports participation
      • Competitive
      • Recreational/none
      • 2
      • 0
      • Type of sport participation
      • Contact/forced overhead
      • Other
      • 1
      • 0
      • Shoulder Hyperlaxity
      • Hyperlaxity (anterior/inferior)
      • Normal
      • 1
      • 0
      • Hill sachs on AP x-ray
      • Visible on external rotation
      • Not visible on external rotation
      • 2
      • 0
      • Glenoid contour loss on AP x-ray
      • Loss of contour
      • No lesions
      • 2
      • 0
      • Clinical Implications 
      • Total Possible = 10
      • An acceptable recurrence risk of 10% with arthroscopic stabilization.
      • < 6 points
      • A score of > 6 points has an unacceptable recurrence risk of 70% and should be advised to undergo open surgery (i.e. Laterjet procedure).
      • > 6 points
  • Presentation
    • History
      • patients often recount a traumatic event leading to a dislocation
      • important to clarify whether patient needed a formal reduction, or if they spontaneously reduced
    • Symptoms
      • traumatic event causing dislocation
      • feeling of instability
      • shoulder pain complaints
        • caused by subluxation and excessive translation of the humeral head on the glenoid
    • Physical exam
      • load and shift
        • Grade 0 - normal glenohumeral translation
        • Grade I - translation to the glenoid rim, without dislocation 
        • Grade II - shifts over glenoid rim, spontaneously reduces
        • Grade III - shifts over glenoid rim, does not spontaneously reduce
      • apprehension sign
        • patient supine with arm 90 degrees abducted and 90 degrees externally rotated
        • positive when patients experiences apprehension
        • positive sign in mid-ranges of abduction is highly suggestive of concomitant glenoid bone loss
      • relocation sign
        • decrease in apprehension with anterior force applied on shoulder during apprehension testing
      • sulcus sign
        • tested with patient's arm at side
      • generalized ligamentous laxity
        • increased risk of recurrent instability in patients with hyperlaxity
        • assess via Beighton's criteria (score > 4)
        • shoulder specific laxity defined as
          • hyperexternal rotation at side > 85 degress
          • hyperabduction > 105 degrees (Gagey's maneuver)
          • OR > 2+ load shift in 2 or more planes (anterior, posterior, inferior)
  • Imaging
    • Radiographs
      • see imaging of shoulder
      • recommended views
        • a complete trauma series needed for evaluation
          • true AP
          • scapular Y
          • axillary
      • optional views
        • West Point view
          • shows glenoid bone loss
        • Stryker view
          • shows Hill-Sachs lesion
    • CT scan +/- arthrogram
      • indications
        • helpful for evaluation of bony injuries and calculation of glenoid bone loss
        • arthrogram usually reserved for patients who are unable to undergo MRI i.e. patients with pacemakers and/or cochlear implants
      • due to limited soft-tissue contrast, CT arthrogram not as effective at visualizing internal soft-tissue derangements as MR arthrogram
    • MRI
      • indications
        • best for visualization of labral tear
        • has been validated as an imaging modality through which to assess bone loss
        • abduction and external rotation (ABER) sequences can be utilized to better visualize the antero-inferior glenoid labrum
    • MR Arthrogram
      • increases sensitivity and specificity (86-91% and 86-96%) for detecting soft-tissue injuries when compared to conventional MRI (44-100% and 66-95%)
  • Treatment
    • Nonoperative
      • acute reduction, ± immobilization, followed by therapy
        • indications
          • management of first-time dislocators remains controversial
            • current ASES recommendations are for surgical intervention for athletes aged 14 to 30 at the end of their competitive season if they have positive apprehension testing and bone loss
        • reduction
          • simple traction-countertraction is most commonly used
          • other reduction techniques include:
            • Kocher: arm at side in external rotation is forward-flexed and then internally rotated
            • Hippocratic: traction against a heel placed in the patients axilla
            • Stimson's: weight is hung from the affected arm of a patient in the prone position
        • immobilization
          • studies have not shown any benefit of immobilization > 1 week for decreasing recurrence rates
          • some studies show immobilization in external rotation decreases recurrence rates in patients < 40
            • thought to reduce the anterior labrum to the glenoid leading to more anatomic healing
            • subsequent studies have refuted this finding and the initially published results have not been reproducible
        • physical therapy
          • strengthening of dynamic stabilizers (rotator cuff and periscapular musculature)
        • outcomes
          • goal is return to sport within 7 to 21 days
          • military and overhead and/or contact athletes experience an unacceptably high rate of recurrent instability
          • risk factors for re-dislocation are
            • age < 20 (highest risk)
            • male
            • contact sports
            • hyperlaxity
            • glenoid bone loss >20-25%
            • greater tuberosity fractures
    • Operative
      • Arthroscopic Bankart repair +/- capsular plication
        • indications
          • relative indications
            • first-time traumatic shoulder dislocation with Bankart lesion confirmed by MRI in athlete younger than 25 years of age
            • high demand athletes
            • recurrent dislocation/subluxation (> one dislocation) following nonoperative management
            • < 20-25% glenoid bone loss
            • remplissage augmentation with arthroscopic Bankart may be considered if Hills-Sachs "off-track"
        • techniques
          • at least three (preferably four) anchor points shoulder be used
          • paramount that labrum is fully mobilized prior to repair
        • outcomes
          • results now equally efficacious as open repair with the advantage of less pain and greater motion preservation
          • increased failure rates seen in patients with global hyperlaxity, glenoid bone loss, or too few fixation points
            • too many anchors does pose a risk for fracture through the anchor holes (postage stamp fracture)
      • Open Bankart repair +/- capsular shift
        • indications
          • Bankart lesion with glenoid bone loss < 20-25%
          • revision stabilization following failed arthroscopic Bankart repair without glenoid bone loss >20%
          • can be considered when there is a concomitant acute glenoid fracture, or if the patient is hyperlax and requires a formal capsular shift during the same procedure
          • humeral avulsion of the glenohumeral ligament (HAGL)
            • can also be performed arthroscopically but is technically challenging
        • technique
          • generally accessed through a deltopectoral approach
          • can fix bony bankart with screws or suture in a linear or bridge technique
        • outcomes
          • results are equivalent to arthroscopic repair, although patients have more pain and less range of motion postoperatively
          • patients with greater than 13.5% glenoid bone loss have higher rates of recurrent instability
      • Latarjet (coracoid transfer) or Bristow Procedure
        • indications
          • chronic bony deficiencies with >20-25% glenoid deficiency (inverted pear deformity to glenoid)
            • in the setting of glenoid bone loss, excessive stress is transferred to labrum and attenuated anterior soft tissues, increasing the risk of failure of labral repair alone
          • transfer of coracoid bone with attached conjoined tendon and CA ligament
          • Latarjet procedure performed more commonly than Bristow
          • Latarjet triple effect = bony (increases glenoid track), sling (conjoined tendon on top of subscapularis), capsule reconstruction (CA ligament)
        • technique
          • deltopectoral approach
          • subscapularis is split
        • outcomes
          • over recurrent instability rate ranges from 0% to 8%
          • good to excellent outcomes are seen in over 90% of patients
      • Autograft (tricortical iliac crest or distal clavicle) or allograft (iliac crest or distal tibia)
        • indications
          • bony deficiencies with >20-25% glenoid deficiency (inverted pear deformity to glenoid)
          • revision of failed latarjet
        • technique
          • can be performed arthroscopic or open
          • distal tibia gaining popularity since graft is a true osteochondral graft
        • outcomes
          • 89% healing rate at a mean of 1.4 years
      • Remplissage + Bankart Repair 
        • indication
          • engaging large (>25-40%) Hill-Sachs defect
          • "off-track" Hill-Sachs lesions with <20-25% glenoid bone loss
        • technique
          • posterior capsule and infraspinatus tendon sutured into the Hill-Sachs lesion
          • may be performed with concomitant Bankart repair
          • by decreasing size of Hill-Sachs, converts on off-track lesion into an on-track lesion
        • outcomes
          • when compared to latarjet with 2-year outcomes, remplissage + bankart had lower recurrent instability rates (1.4% vs. 3.2%) despite greater bipolar bone loss
      • Bone graft reconstruction for Hill Sachs defects
        • indication
          • engaging large (>40%) Hill-Sachs lesions
        • technique
          • allograft reconstruction
          • arthroplasty
          • rotational osteotomy
        • outcomes
      • Tendon transfers 
        • indication
          • chronic, irreparable subscapularis tear 
        • technique
          • latissimus dorsi
            • may better replicate line of pull of native subscapularis
          • pectoralis major - sternal head
        • outcomes
      • Historical procedures: Putti-Platt / Magnuson-Stack / Boyd-Sisk
        • indications
          • led to over-constraint and arthrosis
        • technique
          • goal is to tighten subscapularis
          • Putti-Platt is performed by lateral advancement of subscapularis and medial advancement of the shoulder capsule
          • Magnuson-Stack is performed with lateral advancement of subscapularis (lateral to bicipital groove and at times to greater tuberosity)
          • Boyd-Sisk is transfer of biceps laterally and posteriorly
        • outcomes
          • high rate of post-operative stiffness and subsequent osteoarthritis
            • typical presentation of open procedure performed in 1970s-80s, now with presenting complaint of pain and stiffness from glenohumeral OA, especially lack of ER, and signigicant posterior glenoid wear and retroversion
          • high rate of recurrent instability with Boyd-Sisk
  • Techniques
    • Acute Reduction +/- Immobilization followed by physical therapy
      • indications
        • acute dislocations presenting to the emergency departments
      • techniques
        • relaxation of patient with sedation or intraarticular lidocaine is essential
        • various methods for reduction exist
          • scapular manipulation
          • Kocher
          • Stimson
      • pros/cons
        • timely reduction can help to style the development of further bone loss or joint contractures
      • complications
        • unsuccessful in 5-10% of cases
          • biceps tendon, joint capsule, fracture fragments most common blocks to reduction
        • nerve injury
          • axillary nerve if excessive traction is utilized
        • recurrent instability
          • risk factors include young patient age, bone loss, contact sport participation, global hyperlaxity
    • Arthroscopic Bankart Repair + Capsular plication
      • indications
        • recurrent anterior instability
        • anterior instability in young athletes
        • current trend is towards surgical management after first-time dislocation event, as recurrent instability is associated with greater degrees of glenoid bone loss, which may preclude arthroscopic stabilization
      • approach
        • shoulder arthroscopic approach
      • technique
        • drive through sign might be present prior to labral repair and capsulorraphy
        • studies support use of > 3 anchors (< 4 anchors is a risk factor for failure)
      • complications
        • recurrence, most often due to unrecognized glenoid bone loss or lack of concomitantly addressing "off-track" HS lesion
        • stiffness, especially in external rotation, further loss of ER may occur with the addition of remplissage
          • over-tightening increases the risk of post-capsulorrhaphy arthropathy, especially in older patients
        • axillary nerve injury
          • axillary nerve is on average 12mm from infra-glenoid tubercle
        • chondrolysis (from use of thermal capsulorraphy which is no longer used)
    • Open Bankart repair +/- capsular shift
      • indications
        • often employed in the setting of failed arthroscopic stabilization
        • some surgeons prefer an open procedure if the patient is found to have a HAGL lesion
      • approach
        • shoulder anterior (deltopectoral) approach
      • technique
        • subscapularis transverse split or tenotomy
        • open labral repair and capsulorraphy
        • capsular shift
          • inferior capsule is shifted superiorly
      • complications
        • recurrence
          • most often due to unrecognized glenoid bone loss
        • subscapularis injury or failed repair
          • post-operative physical exam will show a positive lift off and excessive ER
        • stiffness 
          • caused by overtightening of capsule
          • leads to loss of external rotation
          • treat with Z lengthening of subscapularis
        • axillary nerve injury
          • iatrogenic injury with surgery (avoid by abduction and ER of arm during procedure)
        • arthritis
          • usually wear of posterior glenoid
          • may have internal rotation contracture
          • seen with Putti-Platt and Magnuson-Stack procedures
    • Latarjet or Bristow Procedure
      • indications
        • indications vary based on geographic region
          • European surgeons aggressively employ the latarjet
        • young, high-demand contact athletes or athletes of consequence (mountain climbers, big wave surfers)
        • recurrent anterior instability with critical (>20-25%) or subcritical (>13.5%) bone loss
        • patients at high-risk of failure with soft-tissue procedures alone (ISIS > 4-6 points)
      • approach
        • shoulder anterior (deltopectoral) approach
        • can be performed arthroscopically
      • technique
        • coracoid transfer to anterior inferior glenoid bone defect
        • traditional or congruent arc technique for coracoid graft placement
        • after harvest, coracoid is passed through a split in the distal 1/3 or middle 1/2 subscapularis
        • traditional versus congruent arc technique
          • in the congruent arc technique, the undersurface of the coracoid ends up articulating with the humeral head
        • graft can be placed intraarticularly (capsular repaired to CA ligament stump) or extraarticularly (capsule repaired to native glenoid rim)
          • concerns exist for increased rates of subsequent osteoarthritis with intraarticular placement, although this isn't fully supported by high-quality literature
        • no difference in outcomes between open and arthroscopic procedures, although literature has identified a profound learning curve for the arthroscopic latarjet
        • generally higher than arthroscopic or open Bankart, some studies report up to 25% incidence of complications
        • nonunion
        • graft lysis
          • up to 90% of patients undergo some degree of resorption within the first six months
        • hardware problems
        • stiffness, particularly in external rotation
        • glenohumeral osteoarthritis
          • will rapidly occur with lateral overhang of graft into the joint space
          • occurs in up to 38% of patients
        • nerve injury
          • majority are traction or contusion neuropraxias and resolve spontaneously
            • treat with observation for 3-6 weeks; delayed EMG if deficits persist
          • musculocutaneous nerve
            • occurs during instrumentation around the conjoint tendon
            • pieces conjoint tendon, on average, 5.6 cm distally to the tip of the coracoid
          • axillary nerve
            • occurs during graft fixation
            • located, on average, 12mm from infra-glenoid tubercle
    • Autograft (tricortical iliac crest or distal clavicle) or allograft (iliac crest or distal tibia)
      • indications
        • area of research
        • ideal patient for latarjet versus bone block is yet to be identified
        • indications similar to those of latarjet
          • critical or subcritical glenoid bone loss
          • patients at high risk of failure with soft-tissue procedures alone
          • loss graft resoprtion overall when compared to latarjet
          • can be used to revise a failed latarjet
            • some surgeons recommended use of Bovie electrocautery or checkpoint during dissection to ensure that musculocutaneous nerve is not inadvertently injured
      • approach
        • shoulder anterior (deltopectoral) approach
        • arthroscopic
      • technique
        • can use autograft of allograft iliac crest, allograft glenoid or allograft distal tibia
        • can secure with screws or buttons
      • complications
        • hardware failure
        • subscapularis repair failure
    • Remplissage + Bankart Repair
      • indications
        • medium to large engaging/off-track Hill-Sachs lesion
        • some surgeons have begun using remplissage in the setting of subcritical bone loss, as in these patients rates of recurrent instability following arthroscopic management alone approaches 20%
      • approach
        • arthroscopic
          • percutaneous
          • additional posterolateral portal made under visualization
      • technique
        • goal is to fill Hill-Sachs with capsule and infraspinatus tendon
        • can use knotted or knotless configurations
        • most surgeons recommend passing sutures prior to anterior labral repair, and then tying once anterior labral repair is complete
        • new knotless anchors allow for passage and construction of a "double-pulley" configuration, with final tensioning completed after additional intraarticular work
      • complications
        • stiffness, specifically loss of external rotation
          • most patients lose 5-15° of external rotation
        • recurrence
          • 5% at two years
    • Bone graft reconstruction for Hill-Sachs defects
      • indications
        • large Hill-Sachs (>40% of articular surface)
      • approach
        • open
          • anterolateral
          • deltopectoral
        • arthroscopic
      • technique
        • autograft iliac crest
        • allograft (humeral head, talus, femoral head)
        • fresh-frozen osteochondral allograft
      • complications
        • graft lysis
        • disease transmission from allograft
        • osteoarthritis
    • Historical procedures: Putti-Platt / Magnuson-Stack / Boyd-Sisk
      • indications
        • historically indicated for recurrent instability
        • rarely indicated now
      • approach
        • open anterior (deltopectoral) approach
      • technique
        • Putti-Platt is performed by lateral advancement of subscapularis and medial advancement of the shoulder capsule
        • Magnuson-Stack is performed with lateral advancement of subscapularis (lateral to bicipital groove and at times to greater tuberosity)
        • Boyd-Sisk transfer of biceps laterally and posteriorly
      • outcomes
        • Putti-Platt and Magnuson-Stack both lead to decreased external rotation and increased loading on the posterior glenoid, which can lead to post-capsulorraphy arthropathy
  • Complications
    • Recurrence
      • often due to unrecognized glenoid bone loss treated with a soft tissue only procedure (especially with glenoid bone loss >20-25%)
      • can be due to poor surgical technique (ie, < 4 suture anchors)
      • increased risk with preoperative risk factors including age < 20, male sex, contact/collision sport, ligamentous laxity, and unrecognized glenoid and/or humeral head bone loss (critical bone loss or "off-track" lesion)
      • medical management should be exhausted prior to surgery in patients with seizures, as there is a high recurrence risk even when bony augmentation techniques are used
      • unrecognized pan-labral tear
        • high incidence of posterior and/or combined front-to-back tears in the military population
    • Shoulder pain
      • overtightening during labral repair can lead to post-capsulorrhaphy arthropathy
    • Nerve injury (Latarjet)
      • musculocutaneous (most common)
      • axillary
    • Stiffness
      • especially in external rotation (particularly with Latarjet and additional remplissage)
    • Infection
    • Graft lysis (Latarjet)
      • present in up to 90% of patients at six-months
    • Hardware complications
      • anchor pull-out (Bankart repair)
      • screw pull-out (Latarjet)
    • Chondrolysis
      • historically due to use of thermal capsulorraphy (now contraindicated) or intra-articular pain pumps (now contraindicated)
Card
1 of 49
Question
1 of 71
Private Note

Attach Treatment Poll
Treatment poll is required to gain more useful feedback from members.
Please enter Question Text
Please enter at least 2 unique options
Please enter at least 2 unique options
Please enter at least 2 unique options