Please confirm topic selection

Are you sure you want to trigger topic in your Anconeus AI algorithm?

4.5

  • star icon star icon star icon
  • star icon star icon star icon
  • star icon star icon star icon
  • star icon star icon star icon
  • star icon star icon star icon

(133)

Images
https://upload.orthobullets.com/topic/3043/images/1A_moved.JPG
https://upload.orthobullets.com/topic/3043/images/2799528c-f5aa-4795-8e49-0a60817662e7_goutallier..jpg
https://upload.orthobullets.com/topic/3043/images/32_moved.JPG
https://upload.orthobullets.com/topic/3043/images/screen_shot_2016-05-21_at_9.11.32_am.jpg
https://upload.orthobullets.com/topic/3043/images/screen_shot_2016-05-21_at_9.12.05_am.jpg
https://upload.orthobullets.com/topic/3043/images/ml.jpg
  • summary
    • Rotator cuff tears are a very common source of shoulder pain and decreased motion that can occur due to both traumatic injuries in young patients as well as degenerative disease in the elderly patient.
    • Diagnosis can be suspected clinically with provocative tests of the supraspinatous, infraspinatous, teres minor and subscapularis, but confirmation requires an MRI of the shoulder. 
    • Treatment can be nonoperative or operative depending on the chronicity of symptoms, severity of the tear, degree of muscle fatty atrophy, patient age and patient activity demands. 
  • Epidemiology
    • Prevalence
      • age >60: 28% have full-thickness tear
      • age >70: 65% have full-thickness tear
    • Risk factors
      • age
      • smoking
      • hypercholesterolemia
      • family history
  • Etiology
    • Pathophysiology
      • mechanisms of tear includes
        • chronic degenerative tear ( intrinsic degeneration is the primary etiology)
          • usually seen in older patients
          • usually involves the SIT (supraspinatus, infraspinatus, teres minor) muscles but may extend anteriorly to involve the superior margin of subscapularis tendon in larger tears
        • chronic impingement
          • typically starts on the bursal surface or within the tendon
        • acute avulsion injuries
          • acute subscapularis tears seen in younger patients following a fall
          • acute SIT (supraspinatus, infraspinatus, teres minor) tears seen in patients > 40 yrs with a shoulder dislocation
          • full thickness rotator cuff tears need to be repaired in throwing athletes
        • iatrogenic injuries
          • due to failure of surgical repair
            • often seen in repair failure of the subscapularis tendon following open anterior shoulder surgery.
    • Impingement and rotator cuff disease are a continuum of disease including
      • subacromial impingement
      • subcoracoid impingement
      • calcific tendonitis
      • rotator cuff tears (this topic)
      • rotator cuff arthropathy
    • Associated conditions
      • AC joint pathology
      • proximal biceps subluxation
      • proximal biceps tendonitis
      • internal impingement
        • seen in overhead throwing athletes
        • associated with partial thickness rotator cuff tears
        • deceleration phase of throwing leads to tensile forces and potential for rotator cuff tears
  • Anatomy
    • Rotator cuff function
      • the primary function of the rotator cuff is to provide dynamic stability by balancing the force couples about the glenohumeral joint in both the coronal and transverse plane.
        • coronal plane
          • the inferior rotator cuff (infraspinatus, teres minor, subscapularis) functions to balance the superior moment created by the deltoid
        • transverse plane
          • the anterior cuff (subscapularis) functions to balance the posterior moment created by the posterior cuff (infraspinatus and teres minor)
        • this maintains a stable fulcrum for glenohumeral motion.
        • the goal of treatment in rotator cuff tears is to restore this equilibrium in all planes.
    • Rotator cuff footprint
      • supraspinatus inserts on anterosuperior aspect of greater tuberosity
      • medial-lateral width at insertion
        • supraspinatus is 12.7mm (covers superior facet of greater tuberosity)
          • 6-7 mm tear corresponds to 50% partial thickness tear
        • infraspinatus is 13.4mm
        • subscapularis is 17.9mm
        • teres minor is 13.9mm
      • distance between articular cartilage to medial footprint of rotator cuff is 1.6-1.9 mm
      • AP dimension of footprint is 20mm
        • corresponds to insertion of supraspinatus and anterior infraspinatus
    • Rotator cuff histologic areas (5 layers)
      • important because articular side has only half the strength of bursal side
        • explains why most tears are articular sided
      • Layer I
        • most superficial layer (1 mm thick) and composed of fibers from the coracohumeral ligament which extend posteriorly and obliquely
      • Layer II
        • composed of densely packed fibers that parallel the long axis of the tendon (3-5 mm thickness)
      • Layer III
        • smaller loosely organized bundles of collagen at 45° angle to the long axis of the tendon (3 mm thick)
      • Layer IV
        • loose connective tissue and thick collagen bands and merges with fibers from coracohumeral ligament
      • Layer V
        • shoulder capsule (2 mm thick)
    • Rotator cuff blood supply
      • from subscapular, suprascapular and humeral circumflex arteries
        • branching within layer II and layer III (see above for layers)
      • bursal side is more vascular than the articular side (which is hypovascular)
        • zone of critical hypovascularity adjacent to most lateral portion of supraspinatus insertion
    • Anatomic features associated with rotator cuff
      • rotator interval
        • includes the capsule, long head of the biceps tendon, SGHL, and the coracohumeral ligament that bridge the gap between the supraspinatus and the subscapularis.
      • rotator crescent
        • thin, crescent-shaped sheet of rotator cuff comprising the distal portions of the supraspinatus and infraspinatus insertions.
      • rotator cable
        • thick bundle of fibers found at the avascular zone of the coracohumeral ligament running perpendicular to the supraspinatous fibers and spanning the insertions of the supra- and infraspinatus tendons.
    • Complete glenohumeral anatomy
  • Classification
      • Anatomic Classification
      • Supraspinatus, infraspinatus, teres minor (SIT) tears
      • Make up the majority of tears
      • Associated with subacromial impingement
      • Mechanism is often a degenerative tear in older patients or a shoulder dislocation in patients > 40 yrs.
      • Subscapularis tears
      • New evidence suggests higher prevalence than previously thought
      • Associated with subcoracoid impingement
      • Mechanism is often an acute avulsion in younger patients with a hyperabduction/external rotation injury or an iatrogenic injury due to failure of repair
      • Cuff Tear Size
      • Small
      • 0-1 cm
      • Medium
      • 1-3 cm
      • Large
      • 3-5 cm
      • Massive
      • > 5 cm (involves 2 or more tendons)
      • Ellman Classification of Partial-Thickness Rotator Cuff Tears
      • Grade
      • Description
      • I
      • < 3mm (< 25% thickness)
      • II
      • 3-6 mm (25-50%)
      • III
      • > 6 mm (>50%)
      • Location
      • A
      • Articular sided
      • B
      • Bursal sided
      • C
      • Intratendinous
      • Goutallier Classification of Rotator Cuff Atrophy 
      • 0
      • Normal
      • 1
      • Some fatty streaks
      • 2
      • More muscle than fat
      • 3
      • Equal amounts fat and muscle
      • 4
      • More fat than muscle
      • Cuff Tear Shape
      • Crescent
      • Usually do not retract medially, are quite mobile in the medial to lateral direction, and can be repaired directly to bone with minimal tension.
      • U-shape
      • Similar shape to crescent but extend further medially with apex adjacent or medial to the rim of the glenoid.
      • Must be repaired side-to-side using margin convergence first to avoid overwhelming tensile stress in the middle of the rotator cuff repair margin.
      • L-shape
      • Similar to U shape except one of the leaves is more mobile than the other. Use margin convergence in repair.
      • Massive & immobile
      • May be u-shaped or longitudinal. Difficult to repair and often requires and interval slide.
  • Presentation
    • Symptoms
      • pain
        • typically insidious onset of pain exacerbated by overhead activities
        • pain located in deltoid region
        • night pain, which is a poor indicator for nonoperative management
        • can have acute pain and weakness with an traumatic tear
      • weakness
        • loss of active ROM with greater or intact passive ROM
      • Overview of Physical Exam of Rotator Cuff
      • Cuff Muscle
      • Strength Testing
      • Special Tests
      • Supraspinatus
      • Weakness to resisted elevation in Jobe position
      • Drop arm test
      • Pain with Jobe test
      • Infraspinatus
      • ER weakness at 0° abduction
      • ER lag sign
      • Teres minor
      • ER weakness at 90° abduction and 90° ER
      • Hornblowers
      • IR weakness at 0° abduction
      • Excessive passive ER
      • Belly Press
      • Lift off
      • IR lag sign
  • Imaging
    • Radiographs
      • views
        • true AP, AP in internal/external rotation, axillary
        • outlet view to assess acromion
      • findings
        • calcific tendonitis
        • calcification in the coracohumeral ligament
        • cystic changes in greater tuberosity
        • proximal migration of humerus seen with chronic RCT (acromiohumeral interval <7 mm)
        • Type III (hooked) acromion
    • Arthrogram
      • indications
        • not commonly used in isolation; used when MRI contraindicated
      • findings
        • rotator cuff tear present if dye leaks from glenohumeral joint into subacromial joint
      • MR arthrogram may improve sensitivity and specificity
    • MRI
      • indications
        • diagnostic standard for rotator cuff pathology
        • obtain when suspicion for pain or weakness attributable to a rotator cuff tear
      • findings
        • important to evaluate muscle quality
          • size, shape, and degree of retraction of tear
          • degree of muscle fatty atrophy (best seen on sagittal image)
        • cyst in humeral head on MRI seen in almost all patients with chronic RCT
        • tangent sign
          • failure of the supraspinatus to cross a line drawn between the superior borders of the scapular spine and coracoid process on a sagittal MRI slice
      • sensitivity and specificity
        • in asymptomatic patients 60 yrs and older, 55% will have a RCT
    • Ultrasound
      • indications
        • suspicion of rotator cuff pathology
        • need for dynamic examination
      • advantages include
        • allows for dynamic testing
        • inexpensive
        • readily available at most centers
        • helpful to confirm intraarticular injections
      • disadvantages include
        • highly user dependent
        • limited ability to evaluate other intraarticular pathology
      • sensitivity/specificity
        • similar sensitivity, specificity, and overall accuracy for diagnosis of rotator cuff disease as compared to MRI
        • 23% of asymptomatic patients had a rotator cuff tear on ultrasound in one series
  • Treatment
    • Treatment considerations
      • activity and age of patient
      • mechanism of tear (degenerative or traumatic avulsion)
      • characteristics of tear (size, depth, retraction, muscle atrophy)
        • partial thickness tears vs. complete tear
        • articular sided (PASTA lesion) vs. bursal sided
          • bursal sided tears treated more aggressively
    • Nonoperative
      • physical therapy, NSAIDS, subacromial corticosteroid injections
          • first line of treatment for most tears
          • partial tears often can be managed with therapy
        • technique
          • avoidance of overhead activities
          • physical therapy with aggressive rotator cuff and scapular-stabilizer strengthening over a 3-6 month treatment course
          • subacromial injections if impingement thought to be major cause of symptoms
    • Operative
      • subacromial decompression and rotator cuff debridement alone
        • indications
          • select patients with a low-grade partial articular sided rotator cuff tear
      • rotator cuff repair (arthroscopic or mini-open)
        • indications
          • acute full-thickness tears
          • bursal-sided tears >3 mm (>25%) in depth
            • release remaining tendon and debride degenerative tissue
          • partial articular-side tears>50% can be treated with tear completion and repair
            • Partial articular-side tears <50% treated with debridement alone
          • PASTA with >7mm of exposed bony footprint between the articular surface and intact tendon represents significant (>50%) cuff tear (must have at least 25% healthy bursal sided tissue)
            • younger patients with acute, traumatic tears
              • in situ repair leave bursal sided tissue intact
            • older patients with degenerative tears
              • tendon release, debridement of degenerative tissue and repair
        • postoperative
          • rate-limiting step for recovery is biologic healing of RTC tendon to greater tuberosity, which is believed to take 8-12 weeks
            • peribursal tissue and holes drilled in greater tuberosity are major source of vascularity to repaired rotator cuff
            • vascularity can increase with exercise
          • postop with limited passive ROM (no active ROM)
        • outcomes
          • Worker's Compensation patients report worse outcomes
            • higher postop disability and lower patient satisfaction
        • patients should expect to return to full work duty by 6-10 months after surgery
      • tendon transfer
        • indications
          • massive cuff tears
        • techniques (see details below)
          • pectoralis major transfer
          • latissimus dorsi transfer
            • best for irreparable posterosuperior tears with intact subscapularis
      • superior capsular reconstruction
        • indications
          • massive irreparable rotator cuff tear with intact subscapularis
      • reverse total shoulder arthroplasty
        • indications
          • massive cuff tears with glenohumeral arthritis with intact deltoid
  • Technique
    • Mini-open rotator cuff repair
      • once was gold standard but has been largely been replaced by arthroscopic techniques
      • approach
        • small horizontal variant of shoulder lateral (deltoid splitting) approach
      • advantages over open approach
        • decreased risk of deltoid avulsion
        • faster rehabilitation (do not need to protect deltoid repair)
          • may begin passive ROM immediately to prevent adhesive capsulitis
          • most surgeons wait ~6 weeks before initiating active ROM
    • Arthroscopic rotator cuff repair
      • advantages
        • studies now show equivalent results to open or mini-open repair
      • important concepts
        • margin convergence
          • shown to decrease strain on lateral margin in U shaped tears
        • anterior interval slide
          • release supraspinatus from the rotator interval (effectively incising coracohumeral ligament). This increases the mobility of supraspinatus and allows it to be fixed to the lateral footprint.
        • posterior interval slide
          • release supraspinatus from infraspinatus. This further increases the mobility of supraspinatus and allows it to be fixed to the lateral footprint. Then repair supraspinatus to infraspinatus with margin convergence.
        • subscapularis repair
          • although arthroscopic repair is technically challenging, new studies show superior outcomes (motion and pain) compared to open repair
          • stabilize biceps tendon with tenodesis
          • posterior lever push maneuver useful to identify insertional humeral footprint tears
          • superolateral margin of subscapularis identified by the "comma sign"
            • superior glenohumeral and coracohumeral ligaments attach to the subscapularis tendon
        • long head biceps tendon repair
          • most studies show negligible difference between tenotomy vs. tenodesis after concurrent rotator cuff repair
        • footprint restoration
          • it is hypothesized that a larger footprint will improve healing and the mechanical strength of the rotator cuff repair
          • double row suture techniques (mattress sutures in medial row and simple sutures in lateral row) have been shown to create a more anatomic repair of the footprint
            • lower retear rate compared with single row
            • no difference in functional score, pain score, time to healing (compared to single row)
          • addition of a trough in the greater tuberosity to allow tendon-to-cancellous bone interface as opposed to tendon-to-cortical bone has NOT show increased repair strength in animal models
        • coracoacromial ligament release
          • release leads to an increased anterior/inferior translation of the glenohumeral joint
        • acromioclavicular joint arthritis 
          • no significant difference in long-term functional outcomes, shoulder range of motion, or reoperation rates when performing rotator cuff repair with concomitant distal clavicle resection compared to rotator cuff repair alone  
    • Tendon transfer
      • indicated for massive and irreparable rotator cuff tears
      • pectoralis major transfer
        • indicated in chronic subscapularis tears
        • transferring pectoralis major under the conjoined tendon more closely replicates the vector forces of the native subscapularis
        • requires 4-6 weeks of rigid immobilization
      • latissimus dorsi transfer
        • indicated in large supraspinatus and infraspinatus tears
        • best candidate is young laborer
        • attach to cuff muscles, subscapularis, and GT
        • brace immobilize for 6 wks. in 45° abduction and 30° ER.
        • nerves at risk
          • radial nerve
            • runs along anterior surface of latissimus dorsi, ~3cm medial to humeral insertion
            • at risk during tenotomy
          • posterior branch of the axillary nerve
            • runs in deep fascia of posterior deltoid
            • at risk during passage of tendon deep to deltoid to subacromial space
    • Superior capsular reconstruction with biologic or synthetic grafts
      • some recent evidence of improved outcomes with the use of xenograft, allograft, or synthetic patches for massive cuff tears
      • limited human and long-term studies
      • xenograft
        • from bovine dermis or intestine
        • mixed functional outcomes and graft incorporation
      • allograft
        • from human skin or muscular fascia
        • some evidence of good function and survival at short-term
      • synthetics
        • concern for foreign body reaction
        • mixed functional results
    • Lateral acromionectomy
      • historic significance only
      • contraindicated due to high complication rate
  • Complications
    • Recurrence / repair failure
      • most common cause of failed RCR is failure of cuff tissue to heal, resulting in suture pull out from repaired tissue
      • patient risk factors for repair failure
        • patient age >65 years is a risk factor for non-healing of rotator cuff repair and subsequent failure
        • large tear size (>5 cm)
        • muscle atrophy
        • diabetes
        • smokers
        • tear retraction medial to glenoid
        • poor compliance with post-op protocol
          • no difference in clinical outcomes or healing with early vs. delayed motion protocols
        • multiple tendons involved
        • concomitant AC and/or biceps procedures performed at time of repair
      • treatment
        • revision rotator cuff repair vs RTSA
          • variables to consider when choosing revision RCR vs RTSA
            • patient age (older age favors RTSA)
            • etiology of re-tear
            • quality of tissue / MRI findings
            • static proximal humeral migration (favors RTSA)
    • Deltoid detachment
      • complication seen with open approach
    • AC pain
    • Axillary nerve injury
    • Suprascapular nerve injury
      • may occur with aggressive mobilization of supraspinatus during repair
    • Lateral femoral cutaneous nerve injury
      • Secondary to beach chair positioning without appropriate padding
    • Infection
      • less than 1% incidence
        • Usually common skin flora: staph aureus, strep, p.acnes
          • Propionoibacterium acnes is the most commonly implicated organism in delayed or indolent cases
      • risk factors
        • patients who underwent an injection within 3 months of surgery
    • Stiffness
      • Physical therapy and guided early range of motion exercises are not shown to reduce stiffness one-year post-operatively
    • Pneumothorax
      • Can be a complication of regional anesthesia (interscalene or supraclavicular block) or the arthroscopy itself
  • Prognosis
    • 50% of asymptomatic tears become symptomatic in 2-3 years
    • 50% of symptomatic full-thickness tears progress at 2 years and bigger tears progress faster
Card
1 of 37
Question
1 of 95
Private Note

Attach Treatment Poll
Treatment poll is required to gain more useful feedback from members.
Please enter Question Text
Please enter at least 2 unique options
Please enter at least 2 unique options
Please enter at least 2 unique options