Please confirm topic selection

Are you sure you want to trigger topic in your Anconeus AI algorithm?

Images
https://upload.orthobullets.com/topic/3081/images/distal biceps.jpg
https://upload.orthobullets.com/topic/3081/images/popeye.jpg
https://upload.orthobullets.com/topic/3081/images/id lacn.jpg
https://upload.orthobullets.com/topic/3081/images/screen_shot_2017-03-23_at_1.17.38_pm.jpg
https://upload.orthobullets.com/topic/3081/images/biceps_footprint_2.jpg
https://upload.orthobullets.com/topic/3081/images/biceps_footprint.jpg
  • summary
    • Distal Biceps Avulsions are injuries to the biceps tendon at the radial tuberosity insertion that generally occurs due to a sudden excessive eccentric contraction of the biceps brachii.
    • Diagnosis can be made clinically in the setting of complete tears with a hook test. MRI studies can be used to discern between a complete tear and a partial tear. 
    • Treatment can be nonoperative or operative depending on patient age, patient activity demands, chronicity of tear, and degree of tear. 
  • Epidemiology
    • Incidence
      • rare
      • distal biceps tendon rupture represents about 10% of biceps ruptures.
    • Demographics
      • ruptures tend to occur in the dominant elbow (86%) of men (93%) in their 40s.
    • Anatomic location
      • complete distal biceps avulsion
      • partial distal biceps avulsion
        • partial distal biceps tendon tears occur primarily on the radial side of the tuberosity footprint.
      • intersubstance muscle transection
        • seen when rope wrapped around arm (tug-of-war)
    • Risk factors
      • anabolic steroids
      • smoking has 7.5x greater risk than nonsmokers
      • hypovascularity
      • intrinsic degeneration
      • mechanical impingement in the space available for the biceps tendon
  • Etiology
    • Pathophysiology
        • excessive eccentric tension as the arm is forced from a flexed to an extended position "flexed elbow unacceptably challenged"
        • vascular watershed
        • mechanical attrition (abrasion during pronosupination)
    • Associated conditions
      • rarely it can lead to symptoms of median nerve compression
  • Anatomy
    • Biceps tendon inserts onto the radial tuberosity.
    • Contents of antecubital fossa (medial to lateral)
      • median nerve (most medial structure), brachial artery, biceps tendon, radial nerve (most lateral structure)
      • radial recurrent vessels lie superficial to biceps tendon
    • Distal biceps tendon possesses two distinct insertions
      • short head attaches distally on radial tuberosity (thin sliver)
        • origin is coracoid processs
        • is a better flexor
      • long head attaches proximally on radial tuberosity (oval footprint)
        • origin is the superior lip of the glenoid and glenoid labrum
        • is a better supinator as attachment is furthest from axis of rotation (attaches to apex of radial tuberosity)
        • independent function to prevent anterior, inferior and superior translation of humeral head against proximal pull of short head of biceps
    • Lacertus fibrosus
      • distal to the elbow crease, the tendon gives off, from its medial side, the lacertus fibrosus (bicipital aponeurosis or biceps fascia)
      • originates from the distal short head of the biceps tendon
      • lacertus passes obliquely across the cubital fossa, running distally and medially, helping to protect the underlying brachial artery and median nerve
      • it is continuous with the deep fascia of the flexor tendon origin, envelopes flexor muscle bellies
      • may be mistaken for an intact distal biceps tendon on clincial exam
  • Presentation
    • History
      • patient often experiences a painful “pop” as the elbow is eccentrically loaded from flexion to extension.
    • Symptoms
      • weakness and pain, primarily in supination, are hallmarks of the injury.
    • Physical exam
      • inspection and palpation
        • varying degree of proximal retraction of the muscle belly
          • “reverse Popeye sign”
        • change in contour of the muscle, proximally
        • medial ecchymosis
        • a palpable defect is often appreciated
      • motor exam
        • loss of more supination than flexion strength
          • loss of 50% sustained supination strength
          • loss of 40% supination strength
          • loss of 30% flexion strength
      • provocative tests
        • Hook test
          • performed by asking the patient to actively flex the elbow to 90° and to fully supinate the forearm
          • examiner then uses index finger to hook the lateral edge of the biceps tendon.
            • with an intact / partially torn tendon, finger can be inserted 1 cm beneath the tendon
          • false positive
            • partial tear
            • intact lacertus fibrosis
            • underlying brachialis tendon
          • sensitivity and specificity 100%
        • Ruland biceps squeeze test (akin to the Thompson/Simmonds test for Achilles rupture)
          • elbow held in 60-80° of flexion with the forearm slightly pronated.
          • one hand stabilizes the elbow while the other hand squeezes across the distal biceps muscle belly.
          • a positive test is failure to observe supination of the patient’s forearm or wrist.
          • sensitivity 96%
        • challenge is to distinguish between complete tear and partial tear.
          • biceps tendon is absent in complete rupture and palpable in partial rupture (otherwise they have a very similar clinical picture)
  • Evaluation
    • Radiographs
      • usually normal
      • occasionally show a small fleck or avulsion of bone from the radial tuberosity
    • MRI
      • positioning in elbow flexion, shoulder abduction, forearm supination increases sensitivity
      • is important to distinguish between
        • complete tear vs. partial tear
        • muscle substance vs. tendon tear
        • degree of retraction
  • Treatment
    • Nonoperative
      • supportive treatment followed by physical therapy
        • indications
          • older, low-demand or sedentary patients who are willing to sacrifice function
          • if the lacertus fibrosis is intact, the functional deficits of biceps rupture may be minimized in a low-demand patient.
        • outcomes
          • will lose 50% sustained supination strength
          • will lose 40% supination strength
          • will lose 30% flexion strength
          • will lose 15% grip strength
    • Operative
      • surgical repair of tendon to tuberosity
        • indications
          • young healthy patients who do not want to sacrifice function
          • partial tears that do not respond to nonoperative management
          • subacute/chronic ruptures may be treated successfully with direct repair (without allograft)
            • may need to hyperflex elbow to achieve fixation
            • hyperflexion does NOT lead to loss of elbow ROM or flexion contracture
        • timing
          • surgical treatment should occur within a few weeks from the date of injury
            • further delay may preclude a straightforward, primary repair.
            • a more extensile approach may be required in a chronic rupture to retrieve the retracted and scarred distal biceps tendon.
  • Techniques
    • Anterior Single-Incision Technique
      • single incision technique was developed to reduce the incidence of HO and synostosis seen with the double incision technique
      • technique
        • limited antecubital fossa incision
        • interval between the brachioradialis and pronator teres
        • radial (lateral) retraction of the brachioradialis and medial retraction of the pronator teres
        • lateral antebrachial cutaneous nerve (LABCN) is identified as it exits between the biceps and brachialis at antecubital fossa.
          • originates from lateral cord of brachial plexus (terminal branch of musculocutaneous nerve)
        • recurrent radial vessels encountered and either coagulated or carefully dissected and retracted
        • protect PIN by limiting forceful lateral retraction and maintaining supination
      • complications
        • injury to the LABCN is most common
          • more LABCN injury than 2-incision approach
        • radial nerve or PIN injury is most severe
          • risk has decreased with new tendon fixation techniques that require less dissection in the antecubital fossa
        • synostosis and resulting loss of pronation/supination
          • avoid exposing periosteum of ulna
          • avoid dissection between the radius and ulna
        • heterotopic ossification
          • less common than with 2 incision technique
      • postoperative
        • immobilize in 110° of flexion and moderate supination
    • Dual Incision Technique
      • developed to avoid injury to radial nerve/PIN
      • technique
        • uses smaller anterior incision over the antecubital fossa and a second posterolateral elbow incision
          • posterior interval is between ECU and EDC
          • avoid exposing ulna
            • do NOT use interval between ECU/anconeus (Kocher's interval) or anconeus and ulna
        • anterior dissection is same as single incision described above
        • after the biceps is identified, the radial tuberosity is palpated, and a blunt, curved hemostat is placed in the interosseous space along the medial border of the tuberosity and palpated on the dorsal proximal forearm
        • hemostat pierces anconeus and tents the skin indicating where the posterolateral incision should be made
      • complications
        • LABCN injury is most common
        • synostosis and heterotopic ossification more common with 2 incision than single incision
    • Distal Biceps Fixation Techniques
      • comparison
        • tolerances
          • elbow at 90°, no load, distal biceps sustains 50N
          • elbow at 90°, with 1kg load, distal biceps sustains 112N
          • force to rupture = 200N
          • repair needs to be able to withstand 50N
        • suture button (400N) > suture anchor (380N) > bone tunnel (310N) > interference screw (230N)
        • combination technique (suture button + interference screw) stronger than single technique
      • bone tunnel
        • 2-incision approach
        • tuberosity is exposed and a guide pin drilled through the center of the tuberosity
        • acorn reamer is used to ream through anterior cortex to recreate a slot of varying depth
        • two or three 2-mm diameter holes are drilled 1 cm apart through the lateral, far side of the radius
        • no. 2 sutures sown to the distal tendon are passed and tied across the bone bridge.
      • suture anchors
        • single-incision approach
        • radial tuberosity is debrided to prepare for bone-to-tendon healing
        • 2 suture anchors inserted into the biceps tuberosity, one distal and one proximal.
        • the distal anchor is tied first to bring the tendon out to length.
        • next, the sutures of the proximal anchor are tied
        • this repair sequence maximizes tendon-to-bone contact and surface area.
      • intraosseous screw fixation
        • single-incision approach
        • similar to the bone tunnel technique, except the No. 2 suture (whip-stitched through the tendon) is passed through a bioabsorbable tenodesis screw.
      • suspensory cortical button
        • single-incision approach
        • tendon end is whip-stitched with the suture ends placed into two central holes of the button.
        • similar to bone tunnel technique, an acorn reamer is used to ream through the anterior cortex after exposing tuberosity.
        • a smaller hole is then drilled through the far cortex to allow the button to be passed across the far cortex.
        • button is flipped to lie on far cortex, and suture ends are tensioned (tension slide) to bring tendon into tunnel
  • Complications
    • LABCN injury
      • most common complication overall (9% incidence)
      • because of overaggressive retraction
      • more common with single incision technique
      • usually resolved in 3-6mth
    • PIN injury
      • more common in single incision than 2 incision technique
      • most commonly injured motor nerve (1-2% incidence)
      • usually resolve in 3-6mth
    • Superficial radial nerve injury
      • 2nd most common cutaneous nerve injured (2-3%)
    • Heterotopic ossification
      • if interosseous membrane and ulnar periosteum disrupted
      • a risk of the 2 incision technique
    • Synostosis
    • Proximal radius fracture
      • from large tunnels or those proximal to the radial tuberosity 
    • Suture rupture (if bone tunnel method used)
Card
1 of 4
Question
1 of 32
Private Note

Attach Treatment Poll
Treatment poll is required to gain more useful feedback from members.
Please enter Question Text
Please enter at least 2 unique options
Please enter at least 2 unique options
Please enter at least 2 unique options