Please confirm topic selection

Are you sure you want to trigger topic in your Anconeus AI algorithm?

Updated: Jun 5 2022

Pediatric Spondylolysis & Spondylolisthesis

Images
https://upload.orthobullets.com/topic/2058/images/lysis.jpg
https://upload.orthobullets.com/topic/2058/images/8b612bbf-1056-4d05-8954-33092fd12217_sclerosis..jpg
https://upload.orthobullets.com/topic/2058/images/c6aac5c2-cc3c-46da-9318-86e2557f77c5_scott_dog..jpg
https://upload.orthobullets.com/topic/2058/images/e2cb0aad-b535-4443-807b-2bfdcbe9240d_ct_image..jpg
https://upload.orthobullets.com/topic/2058/images/2af88d72-2b21-4d1c-afc7-17ce6871d95c_pars_reaction..jpg
https://upload.orthobullets.com/topic/2058/images/spect scan.jpg
  • Summary
    • Pediatric Spondylolysis & Spondylolisthesis represent a continuum of disease where there is a fracture of the pars interarticularis (spondylolysis) which may progress to anterior subluxation of one vertebral body anterior to the adjacent inferior vertebral body (spondylolisthesis).
    • Diagnosis of spondylolysis alone can be challenging on imaging and the ideal study is controversial. Radiographs, CT scan, and MRI may all play a role. Spondylolisthesis is diagnosed on a lateral radiograph. 
    • Treatment may be nonoperative or surgical depending on the degree of back pain, malalignment of vertebral bodies, and neurological symptoms.
  • Epidemiology
    • Incidence
      • common
        • up to 6-7% of adolescent athletes
        • implicated in up to 47% of low back pain complaints in this population
    • Demographics
      • higher incidence in Native Americans
    • Anatomic location
      • typically involves pars of L5 and anterolisthesis of L5 relative to S1
    • Risk factors
      • prevalence of spondylolysis may be as high as 47% in certain athletes (gymnasts, weightlifters, football linemen)
      • contact sports and those involving repetitive hyperextension (ex. linebacker)
      • higher sacral table index, pelvic incidence, sacral slope, and lower sacral table angle
  • Etiology
    • Pathophysiology
      • conditions represent a continuum of disease including
        • pars stress reaction
          • defined as sclerosis of pars without complete bone disruption
        • spondylolysis
          • defined as a complete fracture of the pars interarticularis
          • mechanism
            • defects are not present at birth and develop over time (seen in 4-6% if population)
            • usually activity related and occurs from repetitive hyperextension
        • isthmic spondylolisthesis (spondylolytic spondylolithesis)
          • defined as forward translation of one vertebral segment over the one beneath it due to a pars defect
          • risks of progression
            • approximately 15% of individuals with a pars interarticularis lesion have progression to spondylolisthesis
            • the larger the slip the more likely it is to progress
              • > Myerding 2 (>50% slip)
            • dysplastic slips (Wiltse Type I) are more likely to progress
          • severity of current slip
            • correlates most strongly with pelvic incidence
        • spondyloptosis
          • 100% translation of one vertebra over the next caudal vertebra
    • Genetics
      • possible autosomal dominant inheritance pattern
  • Classification
      • Wiltse-Newman Classification
      • Type I
      • Dysplastic
      • Secondary to congenital abnormalities of lumbosacral articulation including mal-oriented or hypoplastic facets, sacral deficiency, poorly developed pars
      • Posterior elements are intact (no spondylolysis)
      • More significant neurologic symptoms
      • Type II-A
      • Isthmic - Pars Fatigue Fx
      • Type II-B
      • Isthmic - Pars Elongation due to healed stress fx
      • Type II-C
      • Isthmic - Pars Acute Fx
      • Type III
      • Degenerative
      • Type IV
      • Traumatic
      • Type V
      • Neoplastic
      • Marchetti-BartolozziClassification
      • Developmental
      • Includes Wiltse I and II
      • Acquired
      • Traumatic, postsurgical, pathologic, degenerative
      • Meyerding Classification
      • Grade I
      • < 25%
      • Grade II
      • 25-50%
      • Grade III
      • 50-75%
      • Grade IV
      • 75-100%
      • Grade V
      • Spondyloptosis
  • Presentation
    • History
      • classic history is healthy active adolescent who presents with acute onset of low back pain with athletic activity
    • Symptoms
      • asymptomatic
        • many cases of spondylolysis are asymptomatic
      • low back pain
        • no association between radiologic grade and clinical presentation
        • symptoms include insidious onset of activity related low back pain
      • leg symptoms
        • buttock pain
        • hamstring tightness (most common) and knee contracture
        • radicular pain (L5 nerve root)
      • listhetic crisis
        • severe back pain aggravated by extension and relieved by rest
        • neurologic deficit
        • hamstring spasm
      • bowel and bladder symptoms
        • rare
      • cauda equina syndrome (rare)
    • Physical exam
      • inspection
        • high grade/dysplastic patients may develop "heart shaped buttocks" due to sacral prominence
        • flattened lumbar lordosis
        • palpation
          • palpable step off of spinous process
      • motion
        • limitation of lumbar flexion and extension
        • measure popliteal angle to evaluate for hamstring tightness
      • neurovascular
        • straight leg raise may be positive
        • rectal exam if bowel and bladder symptoms present
      • provocative tests
        • pain with single-limb standing lumbar extension
      • gait
        • may walk with a crouched gait when symptoms severe
  • Imaging
    • Pars stress reaction & spondylolysis
      • radiographs
        • indications
          • AP and lateral indicated in all patients with concern for spondylolysis and spondylolithesis
        • AP view
          • may see sclerosis of the stress reaction
        • lateral view
          • may show defect in pars in 80%
        • oblique view
          • views may show sclerosis and elongation in pars interarticularis (scotty dog sign)
          • some studies have shown that oblique does not provide more diagnostic information than AP and lateral radiographs but does increase radiation exposure
      • CT
        • inidcations
          • best study to delineate anatomy of lesion
        • findings
          • pars stress reaction will show up as sclerosis on x-rays and CT scan
      • single photon emission computer tomography (SPECT)
        • indications
          • previously considered the best diagnostic adjunct when plain radiographs are negative; however, now rarely performed given unnecessary radiation exposure
          • can also detect osteoid osteomas, sacroiliitis, osteitis pubis, and disc herniation
        • techniques
          • combines technique of bone scan with CT in order to help localize an area of abnormal activity seen on bone scan
      • MRI
        • indications
          • negative ragdiographs with high suspicion
          • very acute presentation
          • any neurological deficits
        • sensitivity & specificity
          • recent studies have shown MRI to be as sensitive and specific as SPECT, with the additional benefit of avoiding radiation exposure
      • bone scan
        • indications
          • excellent screening tool for low back pain in children or adolescents
        • sensitivity & specificity
          • most sensitive (however lesion may be cold)
    • Spondylolisthesis
      • radiographs
        • views
          • lateral x-ray used to measure slip angle and grade.
          • flexion and extension radiographs used to evaluate instability
        • measurements
          • slip grade
            • slippage on plain lateral radiographic imaging measured in accordance to the vertebra below
              • the caudal vertebra is divided into four parts
                • Grade I means a translation of the cranial vertebra of up to 25%
                • Grade II of up to 50%
                • Grade III of up to 75%
                • Grade IV up to 100%
                • Grade V describes the ptosis of the cranial vertebra
          • slip angles
            • methodology to determine slip angle
            • most important determinant for nonunion and pain
            • angle >45-50 degrees associated with greater slip progression, instability, and development of post-op pseudo
          • pelvic incidence
            • pelvic incidence = pelvic tilt + sacral slope
            • a line is drawn from the center of the S1 endplate to the center of the femoral head
            • a second line is drawn perpendicular to a line drawn along the S1 endplate, intersecting the point in the center of the S1 endplate
            • the angle between these two lines is the pelvic incidence (see angle X in figure above)
            • correlates with severity of disease
            • pelvic incidence has direct correlation with the Meyerding–Newman grade
          • pelvic tilt
            • pelvic tilt = pelvic incidence - sacral slope
            • a line is drawn from the center of the S1 endplate to the center of the femoral head
            • a second vertical line (parallel with side margin of radiograph) line is drawn intersecting the center of the femoral head
            • the angle between these two lines is the pelvic tilt (see angle Z in figure above)
          • sacral slope
            • sacral slope = pelvic incidence - pelvic tilt
            • a line is drawn parallel to the S1 endplate
            • a second horizontal line (parallel to the inferior margin of the radiograph) is drawn
            • the angle between these two lines is the sacral slope (see angle Y in the figure above)
      • CT
        • best study to diagnose and delineate anatomy of pars defect
      • MRI
        • indicated if neurologic symptoms present
        • useful to diagnose associated central and foraminal stenosis
  • Treatment
    • Nonoperative
      • observation alone (no activity limitations)
        • indications
          • asymptomatic patients
            • regardless of slip grade which does not correlate with clinical presentation
        • return to in contact sports is controvesial
          • limited evidence to guide surgeons following surgical management, decision must be individualized
          • some data shows patients who stop sports for at least 3 months have improved outcomes compared to those who continue to play
        • outcomes
          • typically do well and remain asymptomatic
      • physical therapy & activity restriction
        • indications
          • symptomatic isthmic spondylolysis
          • symptomatic low-grade spondylolisthesis
        • technique
          • physical therapy should be done for 6 months and include
            • hamstring stretching
            • pelvic tilts
            • abdominal strengthening
        • outcomes
          • most improve and do not require surgery
          • watch low grade dysplastic carefully as there is a higher chance of progression
      • bracing for 6 to 12 weeks
        • indications
          • acute pars stress reaction spondylolysis
          • isthmic spondylolysis that has failed to improve with physical therapy
          • low grade spondylolisthesis that has failed to improve with physical therapy
        • technique
          • typically a TLSO
        • outcomes
          • brace immobilization is superior to activity restriction alone for acute stress reaction spondylolysis
    • Operative
      • pars interarticularis repair
        • indications
          • L1 to L4 isthmic defect that has failed nonoperative management
          • multiple pars defects
        • outcomes
          • typically superior to fusion procedures, preserves motion
      • L5-S1 posterolateral fusion, +/- ALIF, +/- sacroiliac fusion
        • indications
          • L5 spondylolysis that has failed nonoperative treatment
          • low grade spondylolisthesis (Myerding Grade I and II) that
            • has failed nonoperative treatment
            • is progressive
            • has neurologic deficits
            • is dysplastic due to high propensity for progression
        • return to sport
          • some evidence to support that ALIF may help return to competetitive sports
          • most surgeons allow return to noncontact sports 3-6 months following fusion and return to contact sports 6-12 months (controversial)
        • outcomes
          • patients typically do well and return to sport in 3-6 months
      • L4-S1 posterolateral fusion, +/- reduction, +/- sacroiliac fusion, +/- ALIF
        • indications
          • high grade spondylolytic spondlylisthesis (Meyerding Grade III, IV, V)
          • reduction is extremely controversial with no accepted guidelines
        • outcomes
          • patients typically do well but may have greater motion limitations with multi-level fusion
          • over-aggressive reduction techniques may result in neurologic impairments
  • Techniques
    • Par interarticularis repair
      • approach
        • posterior midline approach to lumbar spine
      • technique
        • repair pars defect with screw fixation, tension wiring, or screw and sublaminar hook technique
        • decompression indicated if clinical symptoms of stenosis
        • contraindications
          • disc degeneration (obtain MRI for sx planning)
    • L5-S1 posterolateral fusion +/- ALIF
      • approach
        • posterior midline approach to lumbar spine
      • technique
        • decompression only indicated if clinical symptoms of stenosis or radiculopathy
        • in-situ fusion with bone grafting / with or without instrumentation
      • postoperative
        • usually postoperative immobilization in a TLSO
    • L4-S1 posterolateral fusion, +/- reduction+/- sacroiliac fusion, +/- ALIF
      • approach
        • posterior midline approach to lumbar spine
      • technique
        • reduction
          • reduction may be done with instrumentation or positioning
          • pros of reduction
            • can restore sagittal alignment and reduce lumbosacral kyphosis
          • cons
            • risk of significant complications (8-30%) including
            • L5 is the most common nerve root injury with reduction
            • sexual dysfunction
            • catastrophic neurologic injury
        • fusion/decompression
          • usually instrumented
          • the addition of decompression and anterior-posterior (360 deg) fusion is associated with more in-hospital complications
            • the use of interbody cages in this population has decreased significantly, while costs associated with treatment in general have increased over time
  • Complications
    • Neurologic deficits
      • consider neuromonitoring during reduction, especially in a high-grade slip
      • L5 n. root injury is the most common neuro cx
    • Pseudoarthrosis
    • Slip Progression
    • Hardware failure
  • Prognosis
    • Most symptomatic patients can be successfully managed nonoperatively
    • In patients who fail non-operative management, spinal fusion results in 90% success rates
    • Return to sports is controversial
Card
1 of 64
Question
1 of 19
Private Note

Attach Treatment Poll
Treatment poll is required to gain more useful feedback from members.
Please enter Question Text
Please enter at least 2 unique options
Please enter at least 2 unique options
Please enter at least 2 unique options