Please confirm topic selection

Are you sure you want to trigger topic in your Anconeus AI algorithm?

4.3

  • star icon star icon star icon
  • star icon star icon star icon
  • star icon star icon star icon
  • star icon star icon star icon
  • star icon star icon star icon

(129)

Images
https://upload.orthobullets.com/topic/1021/images/xray-elbow-lat-terrible triad.jpg
https://upload.orthobullets.com/topic/1021/images/xcc.jpg
https://upload.orthobullets.com/topic/1021/images/xc.jpg
https://upload.orthobullets.com/topic/1021/images/amcl.jpg
  • summary
    • Terrible Triad Injury of Elbow is a traumatic injury pattern of the elbow characterized by elbow dislocation, radial head/neck fracture, and a coronoid fracture.
    • Diagnosis can be made with plain radiographs of the elbow. CT studies are helpful for surgical planning. 
    • Treatment is generally ORIF versus radial head arthroplasty, LCL reconstruction, coronoid ORIF, and possible MCL reconstruction.
  • Etiology
    • Characterized by presence of
      • elbow dislocation (often associated with posterolateral dislocation or LCL injury )
      • radial head or neck fracture
      • coronoid fracture
    • Pathophysiology
      • mechanism
        • fall on extended arm that results in a combination of
          • valgus, axial, and posterolateral rotatory forces
            • produces posterolateral dislocation
      • pathoanatomy
        • structures of elbow fail from lateral to medial
          • LCL disrupted first
          • anterior capsule injured next
          • possible MCL disruption
  • Anatomy
    • Radial head
      • a primary restraint to posterolateral rotatory instability (PLRI)
      • secondary valgus stabilizer
      • forearm in neutral rotation, lateral portion of articular margin devoid of cartilage
        • roughly between radial styloid and listers tubercle
    • Coronoid process
      • provides an anterior and varus buttress to ulnohumeral joint
      • resists posterior subluxation beyond 30 deg of flexion
      • fracture fragment typically has some anterior capsule attached
        • useful in repair
    • Medial collateral ligament
      • three components
        • anterior bundle
          • most important to stability, restraint to valgus and posteromedial rotatory instability
            • inserts on sublime tubercle (anteromedial facet of coronoid)
            • specifically inserts 18.4mm dorsal to tip of coronoid process
        • posterior bundle
        • transverse ligament
    • Lateral collateral ligament
      • inserts on supinator crest distal to lesser sigmoid notch
      • the primary restraint to posterolateral rotatory instability
      • four components
        • lateral ulnar collateral ligament (most important for stability) 
        • radial collateral ligament
        • annular ligament
        • accessory collateral ligament
      • when injured is usually avulsed off of the lateral epicondyle
  • Presentation
    • Symptoms
      • patients complain of pain, clicking and locking with elbow in extension
    • Physical exam
      • possible varus / valgus instability patterns
      • distal radial ulnar joint must be evaluated for possible Essex-Lopresti injury
  • Imaging
    • Radiographs
      • evaluate for concentricity of ulnohumeral and radiocapitellar joints
      • line drawn through center of radial neck should intersect the center of the capitellum regardless of radiographic projection
      • evaluate lateral radiograph for coronoid fracture
      • need prereduction and postredcution films
      • consider PA and lateral films of wrist and forearm when indicated
    • CT
      • often utilized for better evaluation of coronoid fracture
      • 3D imaging for determining fracture line propagation
  • Treatment
    • Nonoperative
      • immobilize in 90 deg of flexion for 7-10 days
        • indications (rare)
          • ulnohumeral and radiocapitellar joints must be concentrically reduced
          • radial head fx must not meet surgical indications
          • coronoid fx must be small
          • elbow should be sufficiently stable to allow early ROM
        • technique
          • one week of immobilization followed by progressive ROM
          • active motion initiated with resting splint at 90 degrees and forearm pronation, avoiding terminal extension
          • static progressive extension splinting at night after 4-6 weeks
          • strengthening protocol after 6 weeks
    • Operative
      • ORIF versus radial head arthroplasty, LCL reconstruction, coronoid ORIF, possible MCL reconstruction
        • indications
          • terrible triad elbow injury that includes an unstable radial head fracture, a type III coronoid fracture, and an associated elbow dislocation
          • coronoid fractures involving less than 10% of the coronoid do not confer elbow stability in cadaveric studies and therefore do not require repair
            • should instability persist after addressing the radial head and the LCL complex in the presence of a small coronoid fracture, the next best step is MCL reconstruction
  • Techniques
    • ORIF vs replacement of radial head, coronoid ORIF, LCL reconstruction, and possible MCL reconstruction
      • approach
        • posterior skin incision advantageous
          • allows access to both medial and lateral aspect of elbow
          • lower risk of injury to cutaneous nerves
          • more cosmetic
      • technique
        • radial head ORIF vs. arthroplasty
          • radial head ORIF indicated if non comminuted fractures that involve < 40% articular surface
            • 1.5, 2.0, or 2.4mm countersunk screws
            • plate if necessary; 2.0 plates cause minimal loss of motion even when placed on radial neck
            • plate position should be posterolateral
              • safe zone: 90-110 arc from radial styloid to Lister's tubercle with arm in neutral rotation
          • radial head arthroplasty indicated for comminuted radial head fxs (> 3 pieces)
            • implant should articulate 2mm distal to the tip of the coronoid process
            • radial head resection without replacement is NOT indicated in presence of Essex-Lopresti lesion or in ligamentously injured elbows
            • if <25% head damaged or fragments not reconstructable and nonarticulating, can excise fractured portion if elbow stable (rarely indicated)
        • coronoid ORIF
          • can be fixed through radial head defect laterally
          • sutures, suture anchors, screws, or rarely plate fixation.
            • suture passed through 2 drill holes
            • posterior to anterior lag screws if fragment large
            • basal coronoid fxs (rare) fixed with anteromedial or medial plate on proximal ulna
              • FCU split approach preferred for rare isolated coronoid fractures
        • LCL repair
          • usually avulsed from origin on lateral epicondyle
          • reattach with suture anchors or transosseous sutures
            • must be reattached at center of capitellar curvature on lateral epicondyle
          • if MCL is intact, LCL is repaired with forearm in pronation
          • if MCL injured, LCL is repaired with forearm in supination to avoid medial gapping due to overtightening
          • repairs are performed with elbow at 90 degrees of flexion
        • MCL repair
          • indicated if instability on exam after LCL and fracture fixation, especially with extension beyond 30 degrees
      • postoperative
        • elbow fixators - hinged or static
          • consider when instability is noted after complete bone and soft tissue repair
        • immobilization
          • can immobilize elbow in flexion with forearm pronation to provide stability against posterior subluxation
          • if both MCL and LCL were repaired, splint in flexion and neutral rotation
        • rehabilitation
          • initiate active ROM exercises 48 hours after surgery to improve functional outcomes
  • Complications
    • Instability
      • more common following type I or II coronoid fractures
    • Failure of internal fixation
      • most common following repair of radial neck fractures
        • poor vascularity leading to osteonecrosis and nonunion
    • Post-traumatic stiffness
      • very common complication
      • initiate early ROM to prevent
    • Heterotopic ossification
      • consider prophylaxis in pts with head injury or in setting of revision surgery
    • Post-traumatic arthritis
      • due to chondral damage at time of injury and/or residual instability
  • Prognosis
    • Historically poor outcomes secondary to
      • persistent instability
      • stiffness
      • arthrosis
Card
1 of 14
Question
1 of 24
SORT BY:
INCLUDE:
Private Note

Attach Treatment Poll
Treatment poll is required to gain more useful feedback from members.
Please enter Question Text
Please enter at least 2 unique options
Please enter at least 2 unique options
Please enter at least 2 unique options