• OBJECTIVES
    • The aim of this study was to assess the cost effectiveness of multiple competing diagnostic strategies for suspected scaphoid fractures.
  • METHODS
    • With published data, the authors created a decision-tree model simulating the diagnosis of suspected scaphoid fractures. Clinical outcomes, costs, and cost effectiveness of immediate computed tomography (CT), day 3 magnetic resonance imaging (MRI), day 3 bone scan, week 2 radiographs alone, week 2 radiographs-CT, week 2 radiographs-MRI, week 2 radiographs-bone scan, and immediate MRI were evaluated. The primary clinical outcome was the detection of scaphoid fractures. The authors adopted societal perspective, including both the costs of healthcare and the cost of lost productivity. The incremental cost-effectiveness ratio (ICER), which expresses the incremental cost per incremental scaphoid fracture detected using a strategy, was calculated to compare these diagnostic strategies. Base case analysis, 1-way sensitivity analyses, and "worst case scenario" and "best case scenario" sensitivity analyses were performed.
  • RESULTS
    • In the base case, the average cost per scaphoid fracture detected with immediate CT was $2553. The ICER of immediate MRI and day 3 MRI compared with immediate CT was $7483 and $32,000 per scaphoid fracture detected, respectively. The ICER of week 2 radiographs-MRI was around $170,000. Day 3 bone scan, week 2 radiographs alone, week 2 radiographs-CT, and week 2 radiographs-bone scan strategy were dominated or extendedly dominated by MRI strategies. The results were generally robust in multiple sensitivity analyses.
  • CONCLUSIONS
    • Immediate CT and MRI were the most cost-effective strategies for diagnosing suspected scaphoid fractures.
  • LEVEL OF EVIDENCE
    • Economic and Decision Analyses Level II. See Instructions for Authors for a complete description of levels of evidence.