Please confirm topic selection

Are you sure you want to trigger topic in your Anconeus AI algorithm?

Updated: Dec 27 2021

Cavovarus Foot in Pediatrics & Adults

3.7

  • star icon star icon star icon
  • star icon star icon star icon
  • star icon star icon star icon
  • star icon star icon star icon
  • star icon star icon star icon

(67)

Images
https://upload.orthobullets.com/topic/4063/images/Colman block test - flexible hindfoot - courtesy Miller_moved.png
https://upload.orthobullets.com/topic/4063/images/coleman block.jpg
https://upload.orthobullets.com/topic/4063/images/peek.jpg
https://upload.orthobullets.com/topic/4063/images/meary.jpg
https://upload.orthobullets.com/topic/4063/images/calcpitch.jpg
https://upload.orthobullets.com/topic/4063/images/talocalcaneal.jpg
https://upload.orthobullets.com/topic/4063/images/talonavicular.jpg
https://upload.orthobullets.com/topic/4063/images/sinustarsiseethrough.jpg
  • summary
    • Cavovarus Foot is a common condition that may be caused by a neurologic or traumatic disorder, seen in both the pediatric and adult population, that presents with a cavus arch and hindfoot varus.
    • Diagnosis is made clinically with the presence of a foot deformity characterized by cavus, hindfoot varus, plantarflexion of the 1st ray, and forefoot adduction. A coleman block test is useful to assess for the flexibility of the hindfoot deformity to assist with surgical planning. 
    • Treatment ranges from orthotics to operative soft tissue release and operative osteotomies depending on patient age and flexibility of the foot deformity.
  • Epidemiology
    • Demographics
      • seen in both pediatric and adult populations
    • Anatomic location
      • when bilateral often hereditary or congenital
  • Etiology
    • Deformity characterized by
      • cavus (elevated longitudinal arch)
      • plantarflexion of the 1st ray and forefoot pronation
      • hindfoot varus
      • forefoot adduction
    • Pathophysiology
      • neurologic
        • 67% due to a neurologic condition
        • diagnosis of neurologic condition is critical to render appropriate treatment
        • unilateral - rule out tethered spinal cord or spinal cord tumor
        • bilateral - most commonly due to Charcot-Marie-Tooth (CMT) disease
        • muscle imbalances generate deformity
          • weak tibialis anterior and peroneus brevis overpowered by strong peroneus longus and posterior tibialis
          • results in plantarflexed 1st ray and forefoot pronation with compensatory hindfoot varus
            • with the 1st metatarsal plantflexed and forefoot pronated, the medial forefoot strikes ground first
            • the subtalar joint supinates to bring the lateral forefoot to the ground and maintain three-point contact, resulting in hindfoot varus
            • while initially flexible, hindfoot varus can become rigid with time
      • idiopathic
        • usually subtle and bilateral
      • traumatic
        • talus fracture malunion
        • compartment syndrome
        • crush injury
    • Associated conditions
      • conditions which present with cavovarus foot
        • Charcot-Marie-Tooth disease
        • Cerebral palsy
        • Freidreich's ataxia
        • Spinal cord lesions
        • Polio
        • Amnitoic band syndrome (ABS)
      • conditions caused by the presense of cavovarus foot
        • see complications below
  • Presentation
    • History
      • recurrent ankle sprains and lateral ankle pain
        • peroneal tendon pathology
      • lateral foot pain
        • excessive weight bearing by the lateral foot due to deformity
        • can result in 5th metatarsal stress fractures
      • painful plantar calluses under 1st metatarsal head and 5th metatarsal head or base
      • plantar fasciitis
        • elevated medial arch, forefoot pronation and tight gastronemius lead to contracture of the plantar fascia
    • Physical exam
      • Coleman block test
        • evaluates flexibility of hindfoot deformity
        • technique
          • place 1" block under the lateral foot
          • eliminates contribution of the plantarflexed 1st ray and forefoot pronation to the hindfoot deformity
        • findings
          • flexible hindfoot will correct to neutral or valgus when block placed under lateral aspect of foot
          • rigid hindfoot will not correct to neutral
        • guides surgical treatment
          • flexible hindfoot deformities resolve with forefoot corrective procedures
          • rigid hindfoot deformities require corrective hindfoot osteotomy in addition to forefoot procedures
      • peek-a-boo heel
        • anterior standing examination shows varus heel "peeking" around the ankle
      • prominent first metatarsal fat pads
      • Silfverskiold test
        • check dorsiflexion with both knee flexion and knee extension
          • if tight only with knee extension, then gastrocnemius is tight
          • if tight also with knee flexion, then soleus is also tight
        • gastronemius tightness often present with cavovarus foot
      • altered gait
        • unstable base of support
        • increased double limb stance and decreased single limb stance
      • wasting of 1st dorsal interosseous muscle of the hand
        • suggestive of CMT
      • spine exam
        • scoliosis is suggestive of CMT
        • spinal dysraphism
  • Imaging
    • Radiographs
      • recommended views
        • standing anteroposterior (AP), lateral radiographs of the ankle
        • standing AP, lateral and oblique radiographs of the foot
      • findings
        • AP foot
          • talocalcaneal angle < 20° (nl 20-45°)
            • hindfoot varus
          • talonavicular overcoverage
            • talonavicular angle > 7° indicates forefoot adduction
          • metatarsal overlap
            • forefoot pronation
        • lateral foot
          • lateral talo-first metatarsal angle (Meary's angle) > 4° apex dorsal
            • break in Meary's line caused by plantarflexion of the 1st ray
          • calcaneal pitch or inclination angle > 30°
          • sinus tarsi see-through sign and double talar dome sign
            • due to external rotation of the ankle and hindfoot relative to the xray cassette, which is placed along the medial border of the adducted forefoot
          • bell-shaped cuboid
          • increased distance between base of 5th metatarsal and medial cuneiform
        • oblique foot
          • metatarsal stress fractures
          • calcaneonavicular coalitions
  • Studies
    • Electrodiagnostic Studies (EMG/NCS)
      • diagnostic algorithm for CMT generally dictates
        • a neurologic physical exam
        • electrodiagnostic studies
        • genetic testing
    • Genetic studies
      • used to confirm diagnosis after physical exam and electrodiagnostic studies
  • Treatment
    • Nonoperative
      • accomodative shoe wear
        • indications
          • rarely sufficient except in mild deformity
      • full-length semi-rigid insole orthotic with a depression for the first ray and a lateral wedge
        • indications
          • mild cavus foot deformity in adult (not indicated in children)
      • supramalleolar orthosis (SMO)
        • indications
          • more severe cavovarus deformity recalcitrant to shoewear accomodations
      • ankle foot orthosis (AFO)
        • indications
          • may be needed if equinus also present, resulting in equinocavovarus foot deformity
          • works best if equinus is a dynamic defomrity (not rigid)
      • lace-up ankle brace and/or high-top shoe or boots
        • indications
          • may consider in moderate deformities when patient does not tolerate the more rigid bracing with an SMO or AFO
    • Operative
      • soft tissue reconstruction
        • indications
          • failure of nonoperative treatment
        • performed with a combination of the following procedures
          • plantar release
            • indications
              • cavus deformity
            • technique
              • plantar fascia release
              • Steindler stripping (release short flexors off the calcaneus)
          • peroneus longus to brevis transfer
            • indications
              • plantar flexed first ray
            • technique
              • decreases plantarflexion force on first ray without weakening eversion
          • posterior tibial tendon transfer
            • indications
              • muscle imbalance
                • posterior tibialis typically is markedly stronger than evertors and maintains strength for a long time in most cavovarus feet
              • may consider transfer of posterior tibialis to dorsum of foot if severe dorsiflexion weakness of anterior tibialis
          • lengthening of gastrocnemius or tendoachilles (TAL)
            • indication
              • true ankle equinus
              • gastrocnemius recession produces less calf weakness and can be combined with plantar release simultaneously
              • TAL should be staged several weeks after plantar release
          • 1st metatarsal dorsiflexion osteotomy
            • indications
              • flexible hindfoot varus deformities (normal Coleman block test)
                • corrects the forefoot pronation driving the hindfoot deformity
          • lateral ankle ligament reconstruction (e.g. Broström ligament reconstruction)
            • indications
              • chronic ankle instability due to lignamentous incompetence following long-standing cavovarus
          • Jones transfer(s) of EHL to neck of 1st MT and lesser toe extensors to 2nd-5th MT necks
            • indication
              • toe clawing combined with cavus foot
              • performed if the indication is met and time permits
              • the modified Jones transfer for the hallux includes an IP joint fusion
      • lateralizing calcaneal valgus-producing osteotomy
        • indications
          • rigid hindfoot varus deformity (abnormal Coleman block test)
      • triple arthrodesis
        • indication
          • almost never indicated due to very poor long-term results
  • Complications
    • Ankle instability
      • standard lateral ankle ligament reconstruction will fail if cavovarus deformity is not concomitantly addressed
      • untreated can lead to varus ankle arthritis
    • Stress fractures
      • 5th metatarsal base (Jones fracture)
      • 4th metatarsal
      • navicular
      • medial malleolus
    • Hallux sesamoiditis
      • overload from plantarflexed 1st metatarsal head
    • Peroneal tendon pathology
      • tendonitis, tears, subluxation or dislocation
      • peroneus brevis most commonly involved
    • Plantar fasciitis
      • contracture of the plantar fascia results from elevated medial arch, forefoot pronation and tight gastronemius
  • Prognosis
    • Depends on
      • deformity severity
      • etiology
      • patient age
Card
1 of 8
Question
1 of 17
SORT BY:
INCLUDE:
Private Note

Attach Treatment Poll
Treatment poll is required to gain more useful feedback from members.
Please enter Question Text
Please enter at least 2 unique options
Please enter at least 2 unique options
Please enter at least 2 unique options