• ABSTRACT
    • Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by defects in any of the five subunits of the NADPH oxidase complex responsible for the respiratory burst in phagocytic leukocytes. Patients with CGD are at increased risk of life-threatening infections with catalase-positive bacteria and fungi and inflammatory complications such as CGD colitis. The implementation of routine antimicrobial prophylaxis and the advent of azole antifungals has considerably improved overall survival. Nevertheless, life expectancy remains decreased compared to the general population. Inflammatory complications are a significant contributor to morbidity in CGD, and they are often refractory to standard therapies. At present, hematopoietic stem cell transplantation (HCT) is the only curative treatment, and transplantation outcomes have improved over the last few decades with overall survival rates now > 90% in children less than 14 years of age. However, there remains debate as to the optimal conditioning regimen, and there is question as to how to manage adolescent and adult patients. The current evidence suggests that myeloablative conditioning results is more durable myeloid engraftment but with increased toxicity and high rates of graft-versus-host disease. In recent years, gene therapy has been proposed as an alternative to HCT for patients without an HLA-matched donor. However, results to date have not been encouraging. with negligible long-term engraftment of gene-corrected hematopoietic stem cells and reports of myelodysplastic syndrome due to insertional mutagenesis. Multicenter trials are currently underway in the United States and Europe using a SIN-lentiviral vector under the control of a myeloid-specific promoter, and, should the trials be successful, gene therapy may be a viable option for patients with CGD in the future.