• ABSTRACT
    • GH is believed to be widely employed in sports as a performance-enhancing substance. Its use in athletic competition is banned by the World Anti-Doping Agency, and athletes are required to submit to testing for GH exposure. Detection of GH doping is challenging for several reasons including identity/similarity of exogenous to endogenous GH, short half-life, complex and fluctuating secretory dynamics of GH, and a very low urinary excretion rate. The detection test currently in use (GH isoform test) exploits the difference between recombinant GH (pure 22K-GH) and the heterogeneous nature of endogenous GH (several isoforms). Its main limitation is the short window of opportunity for detection (~12-24 h after the last GH dose). A second test to be implemented soon (the biomarker test) is based on stimulation of IGF-I and collagen III synthesis by GH. It has a longer window of opportunity (1-2 wk) but is less specific and presents a variety of technical challenges. GH doping in a larger sense also includes doping with GH secretagogues and IGF-I and its analogs. The scientific evidence for the ergogenicity of GH is weak, a fact that is not widely appreciated in athletic circles or by the general public. Also insufficiently appreciated is the risk of serious health consequences associated with high-dose, prolonged GH use. This review discusses the GH biology relevant to GH doping; the virtues and limitations of detection tests in blood, urine, and saliva; secretagogue efficacy; IGF-I doping; and information about the effectiveness of GH as a performance-enhancing agent.