• ABSTRACT
    • Schatzker type V bicondylar tibial plateau fractures present a major challenge due to the difficulty of achieving stable fixation with minimally invasive strategies. This study introduces a dual-thread lag and locking plate (DLLP) design that integrates lag screw compression with unilateral locking plate fixation. A custom-built compression evaluation platform and standardized 3D-printed fracture models were employed to assess biomechanical performance. DLLP produced measurable interfragmentary compression during screw insertion, with a mean displacement of 1.22 ± 0.11 mm compared with 0.02 ± 0.04 mm for conventional single lateral locking plates (SLLPs) (p < 0.05). In static testing, DLLP demonstrated a significantly greater maximum failure force (7801.51 ± 358.95 N) than SLLP (6224.84 ± 411.20 N, p < 0.05) and improved resistance to lateral displacement at 2 mm (3394.85 ± 392.81 N vs. 2766.36 ± 64.51 N, p = 0.03). Under dynamic fatigue loading simulating one year of functional use, all DLLP constructs survived 1 million cycles with <2 mm displacement, while all SLLP constructs failed prematurely (mean fatigue life: 408,679 ± 128,286 cycles). These findings highlight the critical role of lag screw compression in maintaining fracture stability and demonstrate that DLLP provides superior biomechanical performance compared with SLLP, supporting its potential as a less invasive alternative to dual plating in the treatment of complex tibial plateau fractures.