• ABSTRACT
    • In patients with traumatic brain injury and fractures of long bones, it is often clinically observed that the rate of bone healing and extent of callus formation are increased. However, the evidence has been unconvincing and an association between such an injury and enhanced fracture healing remains unclear. We performed a retrospective cohort study of 74 young adult patients with a mean age of 24.2 years (16 to 40) who sustained a femoral shaft fracture (AO/OTA type 32A or 32B) with or without a brain injury. All the fractures were treated with closed intramedullary nailing. The main outcome measures included the time required for bridging callus formation (BCF) and the mean callus thickness (MCT) at the final follow-up. Comparative analyses were made between the 20 patients with a brain injury and the 54 without brain injury. Subgroup comparisons were performed among the patients with a brain injury in terms of the severity of head injury, the types of intracranial haemorrhage and gender. Patients with a brain injury had an earlier appearance of BCF (p < 0.001) and a greater final MCT value (p < 0.001) than those without. There were no significant differences with respect to the time required for BCF and final MCT values in terms of the severity of head injury (p = 0.521 and p = 0.153, respectively), the types of intracranial haemorrhage (p = 0.308 and p = 0.189, respectively) and gender (p = 0.383 and p = 0.662, respectively). These results confirm that an injury to the brain may be associated with accelerated fracture healing and enhanced callus formation. However, the severity of the injury to the brain, the type of intracranial haemorrhage and gender were not statistically significant factors in predicting the rate of bone healing and extent of final callus formation.