Please confirm topic selection

Are you sure you want to trigger topic in your Anconeus AI algorithm?

Updated: Feb 19 2023

Cerebral Palsy - Hip Conditions

3.9

  • star icon star icon star icon
  • star icon star icon star icon
  • star icon star icon star icon
  • star icon star icon star icon
  • star icon star icon star icon

(49)

Images
https://upload.orthobullets.com/topic/4130/images/windswept pelvis.jpg
https://upload.orthobullets.com/topic/4130/images/at risk.jpg
https://upload.orthobullets.com/topic/4130/images/dislocation.jpg
https://upload.orthobullets.com/topic/4130/images/reimers.jpg
  • summary
    • Hip Conditions in Cerebral Palsy are caused by spasticity and present with a constellation of findings such as hip subluxation, hip dislocation, and hip joint degeneration. 
    • Diagnosis is made with hip radiographs to assess the percent of femoral head with no acetabular coverage using the Reimers migration index.
    • Treatment can range from surgical soft tissue procedures to bony osteotomies depending age of patient, degree of spasticity and on severity hip subluxation. 
  • Epidemiology
    • Incidence
      • progressive hip subluxation occurs in up to 50% of children with spastic quadriparesis (cerebral palsy)
      • incidence of subluxation by age 7 is higher in more severe forms of cerebral palsy
        • GMFCS I: < 10% risk
        • GMFCS II: 10-15% risk
        • GMFCS III: 30-40% risk
        • GMFCS IV: 50-60% risk
        • GMFCS V: 70-80% risk
  • Etiology
    • Cerebral Palsy General
    • Pathoanatomy
      • subluxation
        • strong tone in hip adductor and flexors lead to scissoring and predisposes to hip subluxation and dislocation
      • dislocation
        • dislocation is typically posterior and superior (>95%)
      • degeneration
        • in time, dysplastic and erosive changes in the cartilage of the femoral head can develop and lead to pain
  • Classification
      • Stages of Hip Deformity in Cerebral Palsy
      • Characteristics 
      • Treatment
      • Hip at risk
      • Hip abduction of < 45° with partial uncovering of the femoral head on radiographs
      • Reimers index < 33%
      • Botox A into spastic muscles (age <3) to delay surgery
      • Attempt to prevent dislocation with adductor release, psoas release, hamstring lengthening (age 3-4)
      • Avoid obturator neurectomy
      • Hip subluxation
      • Reimers index >33%
      •  Disrupted Shenton's line
      • Treat with adductor tenotomy if abduction is restricted.
      • If persistent subluxation, proximal femur varus derotational osteotomy (age 5-6)
      • Do pelvic osteotomies (Dega, Pemberton, Salter, PAO or Chiari) if significant acetabular insufficiency is present
      • Spastic dislocation
      • Frankly dislocated hip
      • Reimers index >100%
      • Open reduction with varus derotational osteotomy, + femoral shortening, and pelvic osteotomies
      • Windswept hips
      • Abduction of one hip with adduction of the contralateral hip
      • Brace adducted hip with or without tenotomy and release abduction contracture of abducted hip
      • Comparison of Spastic Hip Dysplasia and Developmental Dysplasia of the Hip
      • Factor
      • Spastic
      • Developmental
      • Findings at birth
      • Hip usually normal
      • Hip usually abnormal
      • Age at risk
      • Usually normal in 1st year of life; recognized after age 2 yr
      • Most often recognized in 1st year of life
      • Detection
      • Radiographs needed in most cases
      • Physical exam in most cases
      • Etiology
      • Spastic muscles drive femoral head out of normal acetabulum, pelvic obliquity
      • Mechanical factors (breech), ligamentous laxity, abnormal acetabular growth
      • Childhood progression
      • Progressive subluxation common
      • Progressive subluxation rare
      • Natural history
      • Pain in many subluxated/ dislocated hips by 2nd or 3rd decade
      • Pain in many subluxated hips by 4th or 5th decade
      • Acetabular deficiency
      • Usually posterosuperior
      • Usually anterior
      • Early measures
      • Muscle lengthening
      • Pavlik harness or closed reduction
      • Missed or failed early measures
      • Hip osteotomies, often without open reduction
      • Closed or open reduction, often without osteotomies (before 18mth of age)
      • Salvage
      • Castle resection-interposition arthroplasty
      • Usually total hip arthroplasty
  • Presentation
    • Symptoms
      • hip and/or groin pain
      • difficulty with sitting
      • difficulty with perineal care/hygiene
    • Physical exam
      • unreliable diagnostic assessment if used alone
      • decreased hip ROM
      • pain with hip motion
      • gait difficulty due to lever arm dysfunction
        • hip subluxation/dislocation rare in ambulatory patients
      • thigh length discrepancy (hard to evaluate in setting of adductor contracture) may be seen - sometimes referred to as a "pseudogalleazi sign"
  • Evaluation
    • Radiographs
      • AP and frog lateral (if possible)
        • Hip abduction of <45° with partial uncovering of the femoral head on radiographs represents an at risk hip
      • Reimers migration index
        • percent of femoral head with no acetabular coverage
          • most accurate method to identify and monitor hip stability
        • < 33% = at risk
        • > 33% = subluxated hip
    • CT Scan
      • More useful for operative planning rather than diagnosis
      • 3d rendering can help plan acetabular correction
      • CT scanogram can be helpful to measure femoral version if planning a derotational osteotomy
  • Treatment
    • Nonoperative
      • observation
        • mild cases
      • Physical therapy never shown to prevent hip subluxation
      • Abduction bracing alone does not reduce dislocations and may cause windswept deformity
    • Operative - soft tissue procedures
      • hip adductor and psoas release with abduction bracing
        • indications
          • children < 4 years and Reimers index > 40%
            • Consider for "at risk" hips (see chart above)
          • any evidence of progressive subluxation if less than 8-year-old
          • May also be used as a supplement to bone procedures
    • Operative - reconstuctive procedures
      • proximal femoral osteotomy with shelf-producing (Dega) osteotomy and soft-tissue release
        • indications
          • children > 4 years old or Reimers index > 60%
        • best to treat all pathology at single stage if the patient has a severely dysplastic CP hip
    • Operative - salvage procedures
      • valgus support osteotomy (femoral head resection + valgus subtrochanteric femoral osteotomy(e.g McHale Technique)
        • indication
          • salvage technique for symptomatic and chronically dislocated hips in cerebral palsy
      • Castle resection-interposition arthroplasty
        • indications
          • chronically dislocated hips, especially in the adult CP population
          • unable to walk, stand to transfer (GMFCS 5)
      • total hip arthroplasty
        • indications
          • ambulatory patients and wheelchair bound who can stand to transfer
        • results
          • 85% 10 year survival in CP patients
      • hip arthrodesis
        • indications
          • young patients
          • ambulatory patients and wheelchair bound who can stand to transfer
      • Girdlestone procedure
        • indications
          • no longer performed because uniformly causes pain
            • caused by lack of interposition of soft tissue between cut femur and acetabulum leads to proximal femoral migration
  • Techniques
    • Hip adductor and psoas release with abduction bracing
      • goals of treatment
        • prevent hip subluxation and dislocation
        • maintain comfortable seating
        • facilitate care and hygiene
        • >45 degrees of hip abduction after releases
      • technique
        • begin with tenotomy of the adductor longus, sequentially release gracilis and adductor brevis as needed
        • release the psoas tendon either at the level of the insertion (non-ambulatory patients) or proximally at the pelvic brim in the myotendonous junction (ambulatory patients)
      • complications
        • careful of obturator nerve if brevis release is needed
          • a neurectomy of the obturator nerve can cause an abduction contraction
        • higher rate of treatment failure in patients with >40% hip subluxation percentage
    • Proximal femoral osteotomy and soft-tissue release, possible acetabular osteotomy
      • goals of treatment
        • hip containment in the severely dysplastic hip with progressive subluxation
        • single-stage osteotomies may have improved outcome
      • technique
        • shortening varus derotational osteotomy to correct increased valgus and anteversion
        • may need pelvic osteotomy to correct acetabular dysplasia; the indications to combine pelvic osteotomy at the time of femur osteotomy remain controversial
    • Valgus support osteotomy (femoral head resection + valgus subtrochanteric femoral osteotomy (e.g McHale Technique)
      • non-anatomic arthroplasty that relieves pain and improves hip abduction
      • technique
        • anterolateral approach to remove femoral head and neck leaving ligamentum teres attached to acetabulum
        • perform a closing wedge subtrochanteric valgus-producing osteotomy and fix with lateral plate
        • attach ligamentum teres to psoas tendon or anterior capsule
        • the lesser trochanter will articulate with the dome of the acetabulum
      • successfully relieves pain despite non-anatomic articulation
    • Castle resection-interposition arthroplasty
      • technique
        • resect proximal femur at the level of lesser trochanter (note the difference from a Girdlestone)
        • oversew vastus over cut proximal femoral end
        • oversew abductors, psoas and hip capsule over acetabulum
        • this interposes a large mass of soft tissue between the acetabulum and proximal femur
  • Complications
    • Osteonecrosis of femoral head
      • incidence 1-11%
    • Heterotopic Ossification
      • prevention
        • radiation on the second or third postoperative day more effective than anti-inflammatory medications
    • Insufficiency factures
      • incidence
        • ranges from 4-29%
      • may be seen in distal femur following postoperative Spica casting
    • Abduction contracture
      • may occur with neurectomy of anterior branch of obturator nerve during adductor releases
  • Prognosis
    • Grade of hip subluxation is correlated with the GMFCS level
      • minimal in level I and up to 90% in level V
    • Natural history studies have shown that hips will dislocate in the absence of treatment if Reimers index >60-70%
Card
1 of 5
Question
1 of 7
SORT BY:
INCLUDE:
Private Note

Attach Treatment Poll
Treatment poll is required to gain more useful feedback from members.
Please enter Question Text
Please enter at least 2 unique options
Please enter at least 2 unique options
Please enter at least 2 unique options