Several studies showed instantaneous axis of rotation (IAR) in the intact spine. However, there has been no report on the trajectory of the IAR of a damaged spine or that of a fixed spine with instrumentation. It is the aim of this study to investigate the trajectory of the IAR of the lumbar spine using the vertebra of deer.

Functional spinal units (L5-6) from five deer were evaluated with six-axis material testing machine. As specimen models, we prepared a normal model, a damaged model, and a pedicle screw (PS) model. We measured the IAR during bending in the coronal and sagittal planes and axial rotation. In the bending test, four directions were measured: anterior, posterior, right, and left. In the rotation test, two directions were measured: right and left.

The IAR of the normal model during bending moved in the bending direction. The IAR of the damaged model during bending moved in the bending direction, but the magnitude of displacement was bigger compared to that of the normal model. In the PS model, the IAR during bending test hardly moved. During rotation test, the IAR of the normal model and PS model located in the spinal canal, but the IAR of the damaged model located in the posterior part of the vertebral body.

In this study, the IAR of damaged model was scattering and that of PS model was concentrating. This suggests that higher mechanical load applied to the dura tube and nerve roots in the damaged model and less mechanical load applied to that in the PS model.