• BACKGROUND
    • Correction of fixed spinal imbalance in a sagittal and/or coronal plane frequently needs a tricolumnar wedge resection when the deformity is rigid. Complications associated with deformity correction surgery are pseudoarthrosis and implant failure located along the construct. The purposes of this study were to assess comparative rates of pseudoarthrosis (implant failure) at weaker points along lumbosacral junction and level of osteotomy, estimate overall incidence of implant failure, and comparatively analyze failures at different points along the construct.
  • METHODS
    • This was an IRB approved, single center study retrospective analysis. Twenty-six patients who underwent three column osteotomies were grouped according to procedure: pedicle subtraction osteotomy (PSO, (n = 18)); vertebral column resection (VCR, (n = 4)); hemivertebra excision (HE, (n = 2)); and extracavitary corpectomy (EC, (n = 2)). Follow-up data is presented on all of the study patients. Number of levels of fusion, anchors, percent saturation of fixation levels, type of bone graft and graft substitutes, and rod material and diameter were recorded. Radiographical data was reviewed preoperatively and postoperatively at 2 weeks and 3, 6, and 12 months and annually to determine sagittal and coronal balance, lumbopelvic parameters, presence or absence of interbody structural support, laterality or rod failure, and time to implant failure.
  • RESULTS
    • Twenty-seven percent (7/26) patients demonstrated rod breakage either unilaterally (N = 2) or bilaterally (N = 5) during follow-up. Seventy-one percent had increasing back pain or worsening sagittal balance, while remaining failures found incidentally. No failures in children were seen.
  • CONCLUSION
    • Tricolumnar osteotomy by posterior approach is a valuable tool. Rod failures found approximately 1 year from surgery, with 86% located at level of osteotomy and 14% at lumbosacral junction. Possible reasons are increased stress in the rod at this point and relatively deficient bone stock secondary to wide laminectomy. The low rate of rod breakage at lumbosacral junction may be related to adoption of structural interbody graft and stronger iliac screws. Additional biomechanical studies needed to assess the importance of these factors. This was a level IV study.