This study examined the kinematic differences of a bilateral transradial amputee using myoelectric and body-powered prostheses during select activities of daily living. First in harness suspended, body powered then self-suspended externally powered prostheses, the subject's shoulder and elbow joint movements were calculated and compared while completing an elbow range of motion test, simulated drinking from an empty cup, and opening a door. In this case, body-powered prostheses allowed for greater range of elbow flexion but required more shoulder flexion to complete the tasks that required continuous grasp. While using myoelectric prostheses, the user was able to compensate for limited elbow flexion by flexing the shoulder.