Please confirm topic selection

Are you sure you want to trigger topic in your Anconeus AI algorithm?

Please confirm action

You are done for today with this topic.

Would you like to start learning session with this topic items scheduled for future?

Ankle Fractures
Updated: Oct 9 2017

Ankle Isolated Lateral Malleolus Fracture ORIF with Lag Screw

Preoperative Patient Care
Operative Techniques
E

Preoperative Plan

1

Radiographic templating of fracture

  • identify ankle fracture pattern (Lauge-Hansen SA, SER, PA, PER) based on mechanism and pre/post-reduction xrays
  • systematically make list of damaged structures that need to be repaired

2

Execute surgical walkthrough

  • resident can describe the key steps of the procedure verbally to the attending prior to the start of the case
  • describe potential complications and steps to avoid them
F

Room Preparation

1

Surgical instrumentation

  • small fragment set (2.0/2.5/2.7/3.5mm drill bits, 2.7/3.5mm cortical screws, 4.0mm cancellous screws, 1/3 tubular plates)
  • 4.0mm cannulated screws (guidewires, 2.5mm cannulated drill, 4.0mm cannulated partially threaded screws, washers)

2

Room setup and equipment

  • radiolucent table
  • c-arm from contralateral side, perpendicular to table, monitor at foot of bed

3

Patient positioning

  • supine with feet at the end of the bed, bump under hip to get limb into neutral rotation (patella pointed towards ceiling)
  • thigh tourniquet optional
  • can elevate distal limb with bump or foam to minimize overlap from other ankle during lateral radiograph
G

Lateral Malleolus Approach

1

Mark fibula anatomy and fracture site

  • mark out lateral malleolus and anterior and posterior borders of fibula
  • mark estimated location of fracture site
  • check with C-arm if unsure

2

Make incision

  • perform a straight longitudinal incision 4-6cm in length centered on fracture
  • make incision along posterior fibula if access to the posterior malleolus is needed
  • create full thickness flaps over distal fibula
  • ensure hemostatsis with cautery

3

Dissect through subcutaneous tissue

  • proximally, use tenotomy scissors to spread subcutaneous tissue in vertical direction with minimal soft tissue stripping
  • identify superficial peroneal nerve with more proximal fractures

4

Perform 2-3mm subperiosteal dissection at fracture edges with scalpel

  • extraperiosteal dissection more proximal and distal to fracture site with knife and/or wood handled elevator
H

Deep Dissection

1

Dissect through subcutaneous tissue

  • proximally, use tenotomy scissors to spread subcutaneous tissue in vertical direction with minimal soft tissue stripping
  • identify superficial peroneal nerve with more proximal fractures

2

Perform 2-3mm subperiosteal dissection at fracture edges with scalpel

  • extraperiosteal dissection more proximal and distal to fracture site with knife and/or wood handled elevator
I

Lateral Malleolus Reduction

1

Prepare the fracture

  • open fracture site with Freer elevator
  • remove hematoma and interposed soft tissue with curettes, small rongeur and right angle snap

2

Reduction

  • use reduction tenaculums to reduce fracture using hand rotation and contralateral thumb to help guide fragments together
  • lobster clamp has good hold on bone but damages more periosteum
  • pointed clamps have a more fine-tuned feel for reduction
  • need to be perpendicular to vector of fracture line
  • apply pressure, then pronate hand to bring fibula out to length for right sided fractures, supinate for left sided fractures (SER patterns)
  • use another clamp to hold reduction once achieved
J

Lateral Malleolus Lag Screw

1

Drill holes

  • mark out perpendicular line to fracture and place 2.7/3.5mm drill bit with sleeve on superior ridge of fibula in same perpendicular line
  • drill first cortex only with 2.7mm drill (for 2.7mm screw) or 3.5mm drill (for 3.5mm screw)
  • insert 2.0mm sleeve into hole (2.7mm screw) or 2.5mm sleeve (3.5mm screw)
  • drill far cortex with 2.0 bit (2.7mm screw) or 2.5mm bit (3.5mm screw)
  • can countersink first cortex to increase surface area distribution for screw
  • use depth gauge to measure length
  • Insert screw
  • keep depth gauge in drill hole to maintain orientation for screw placement
  • insert lag screw and hand tighten carefully to not break bone

2

watch for compression across fracture site

K

Plate Fixation

1

Lateral plate fixation with 1/3 tubular plate

  • determine length of plate
  • check placement on C-arm
  • plan out 2 vs. 3 bicortical 3.5mm screws above and below fracture site
  • screw fixation will contour plate in non-osteopenic bone
  • contour distal aspect of plate if poor bone or very distal screw placement
  • contouring is done by by bending against screw driver tip or using handheld plate benders
  • distal fibula typically flares out laterally and then in more distally
  • insert screws
  • drill bicortically with 2.5mm drill bit, then use depth gauge
  • insert appropriate length 3.5mm screw, alternating proximal to fracture then distal
  • 4.0mm cancellous screw used in this instance
  • antiglide plate technique
  • determine length of 1/3 tubular plate needed ( typically 6-8holes)
  • prepare fracture
  • identify apex of fracture spike posteriorly
  • plate fixation
  • place plate posteriorly over spike, ensuring appropriate proximal-distal placement
  • clamp plate to bone proximally and drill/place non-locking screw in proximal hole in plate
  • drill and place another non-locking screw in the hole just proximal to the fracture line to obtain a reduction
  • place another screw proximally
  • confirm Plate & Screw Position
  • check with C-arm on mortise and lateral views
L

Wound Closure

1

Irrigation and hemostasis

  • irrigate wounds thoroughly and deflate tourniquet if used
  • cauterize any bleeding vessels
  • watching out for saphenous vein medially and SPN laterally

2

Deep closure

  • Use 0-vicryl to close deep fascia over plate
  • ensure no entrapment of the SPN

3

Superficial closure

  • 2-0 vicryl for subcutaneous tissue
  • 3-0 nylon for skin with horizontal mattress stitches
  • in diabetics or patients with high risk for skin breakdown use modified Allgower-Donati stitch to reduce tension on skin

4

Dressing and immediate immobilization

  • soft incision dressing followed by AO splint with extra padding under heel for immobilization
  • crutches or walker for ambulation
Postoperative Patient Care
Private Note

Attach Treatment Poll
Treatment poll is required to gain more useful feedback from members.
Please enter Question Text
Please enter at least 2 unique options
Please enter at least 2 unique options
Please enter at least 2 unique options