• ABSTRACT
    • The aim of this study was to determine the effect of two in-vivo-determined gait patterns, one with low and one with high anteroposterior (AP) motion, on total and backside polyethylene insert wear in comparison with the ISO (International Organization for Standardization) standard 14243-3. In order to differentiate and accurately quantify topside and backside wear, a novel technique was employed where different lanthanide tracers were incorporated into the polyethylene during manufacture. Wear particle analysis was conducted following established protocols. For all tested liners and motion protocols, the chemically calculated wear rates correlated closely with gravimetrically determined wear. Both in vivo motion groups displayed higher wear rates than the ISO group following the order of the AP motion amplitudes. Backside wear for ISO constituted 2.76% ± 0.90% (mean ± SE) of the total wear, increasing significantly to 15.8% ± 3.2% for the low AP and further increasing to 19.3% ± 0.95% for the high AP motion protocol. The mean wear particle sizes were under 200 nm for all three motion patterns, being largest for the protocol with high AP motion. Particle release from the low and high AP gait patterns was 1.9 to 2.8 times that from the ISO protocol. Testing for the proportion of backside wear across various activities of daily living should be an important consideration in evaluating knee prostheses wear.