• BACKGROUND
    • The aim of this study was to compare the fixation rigidity of anterior, anterosuperior, and superior plates in the treatment of comminuted midshaft clavicle fractures.
  • METHODS
    • Six-hole titanium alloy plates were produced according to anatomic features of fourth-generation artificial clavicle models for anterior (group I; n = 14), anterosuperior (group II; n = 14), and superior (group III; n = 14) fixation. After plate fixation, 5-mm segments were resected from the middle third of each clavicle to create comminuted fracture models. Half the models from each group were tested under rotational forces; the other half were tested under 3-point bending forces. Failure modes, stiffness values, and failure loads were recorded.
  • RESULTS
    • All models fractured at the level of the distalmost screw during the failure torque, whereas several failure modes were observed in 3-point bending tests. The mean stiffness values of groups I to III were 636 ± 78, 767 ± 72, and 745 ± 214 N ∙ mm/deg (P = .171), respectively, for the torsional tests and 38 ± 5, 20 ± 3, and 13 ± 2 N/mm, respectively, for the bending tests (P < .001 for group I vs. groups II and III; P = .015 for group II vs. group III). The mean failure torque values of groups I to III were 8248 ± 2325, 12,638 ± 1749, and 10,643 ± 1838 N ∙ mm (P = .02 for group I vs. II), respectively, and the mean failure loads were 409 ± 81, 360 ± 122, and 271 ± 87 N, respectively (P = .108).
  • CONCLUSIONS
    • In the surgical treatment of comminuted midshaft clavicle fractures, the fixation strength of anterosuperior plating was greater than that of anterior plating under rotational forces and similar to that of superior plating.