• ABSTRACT
    • Artificial joints employing ultra-high molecular weight polyethylene (UHMWPE) are widely used to treat joint diseases and trauma. Wear of the polymer bearing surface largely limits the use of these joints in younger and more active patients. Previous studies have shown the wear factor used in Archard's law for the conventional polyethylene to be highly dependent on contact pressure and this has produced variability in experimental data and has constrained the reliability and applicability of previous computational predictions. A new wear law is proposed, based on wear volume being dependent on, and proportional to, the product of the sliding distance and contact area. The dimensionless proportional constant, wear coefficient, which was independent of contact pressure, was determined from a multi-directional pin on plate study. This was used in computational predictions of the wear of the conventional UHMWPE hip joints. The wear of the polyethylene cup was independently experimentally determined in physiological full hip joint simulator studies. The predicted wear rate from the new computational model was generally increased, with an improved agreement with the experimental measurement compared with the previous computational model. It was shown that wear in the UHMWPE hip joints increased as head size and contact area increased. This resulted in a much larger increase in the wear rate as the head size increased, compared with the previous computational model, and is consistent with clinical observations. This new understanding of the wear mechanism in artificial joints using the UHMWPE bearing surfaces, and the improved ability to predict wear independently and to address previously described discrepancies offer new opportunities to optimize design parameters.